Past expectations as a determinant of present prices – hysteresis in a simple economy

Sofia Castro
João Correia-da-Silva
Past expectations as a determinant of present prices - hysteresis in a simple economy

Sofia B. S. D. Castro\(^1\) and João Correia-da-Silva

Faculdade de Economia. Universidade do Porto.
(email addresses: sdcastro@fep.up.pt and joaocs@sapo.pt)

Abstract. We give an illustration of hysteresis (path-dependence) in a simple economy. In the presence of multiple possible equilibrium prices, we find that past expectations determine present prices. This phenomenon of path-dependence is robust under perturbations of the economy.

Keywords: Hysteresis, Path-dependence, Tatônnement, Equilibrium selection.

JEL classification: C62, D50.

1 Introduction

It is known that expectations play a key role in economics. Not only as deriving from an objective reality, but also as primary causes. This idea underlies what Keynes (1936) designated by “animal spirits”, as well as the distinction that financial analysts find useful between the “bull market” and the “bear market”. It is a consensus that expectations about the future are a determinant of present prices - good examples are the interest rate and the inflation rate. It is, however, not as widely accepted that past expectations may also be a determinant of present prices.

Hysteresis is associated to the permanence of effects from a temporary stimulus and to the idea of path dependence. Such phenomena are at the heart of evolutionary models, but do not appear frequently in mainstream economics. Some exceptions are the studies of international trade by Amable (1985) and Ljungqvist (1994), of investment by Dixit (1991), and of unemployment by Roed (1997).\(^2\)

\(^1\)corresponding address: Faculdade de Economia do Porto; Rua Dr. Roberto Frias; 4200-464 Porto; Portugal; phone: +351 225 571 220; fax: +351 225 505 050.

In most models, the concern for *uniqueness* and *determinacy* leaves no room for path-dependence. For example, the results of Arrow, Block and Hurwicz (1959) on stability of equilibrium use conditions that are strong enough to guarantee uniqueness. Nevertheless, in the presence of multiple equilibrium prices, the problem of selection arises and path-dependence may become an issue.

In order to study equilibrium selection, we need to make assumptions on the way market prices are formed. A famous endogenous process of reaching equilibrium is “the law of demand and supply”: if demand exceeds supply, prices rise; and if supply exceeds demand, prices fall. In the lines of Arrow and Hurwicz (1958), we restrict our analysis to this kind of price formation processes.3

Our object of study is an economy with two agents and a single consumption good. There is subjective uncertainty about which of the two possible states of nature will occur, and a problem of risk sharing arises. Agents are subjective expected utility maximizers, having the same state-dependent utility functions but different beliefs. When agents have very asymmetric beliefs, the economy exhibits a multiplicity of equilibria, and this opens the way for the study of path-dependence.

We assume that the beliefs of the agents change during the bargaining process, and that prices adjust continuously. In this setting, we find that the equilibrium price that results from the tatônnement depends on past (transitory) beliefs. This is an example of hysteresis. Past expectations are a determinant of present prices, and this path-dependence is robust under perturbations of the economy under study.

The rest of the paper is organized as follows: in section 2 we present the model of the economy; in section 3 we find hysteresis in a concrete example; and in section 4 we make a qualitative study of price trajectories and equilibrium dynamics.

2 The model

Consider a simple economy with two agents, a single good, and two states of nature. The agents have the same state-dependent utility functions, but different beliefs, $q^i = (q^i_1, q^i_2)$, concerning the probabilities of occurrence of the two states of nature. Denote

3We focus on what Arrow and Hurwicz call the “instantaneous adjustment process”, but the same conclusions would be reached if the “lagged adjustment process” was assumed instead.
consumption of agent 1 in the two states of nature by \((x_1, x_2)\) and consumption of agent 2 by \((y_1, y_2)\). The objective of the agents is to maximize subjective expected utility:

\[
U^1(x_1, x_2; a - \epsilon, \mu) = -x_1^{\mu - 1} - (a - \epsilon)x_2^{\mu - 1},
\]

\[
U^2(y_1, y_2; a, \mu) = -y_2^{\mu - 1} - ay_1^{\mu - 1},
\]

where the expectations of the agents are:

\[
q^1 = (q^1_1, q^1_2) = \left(\frac{1}{1+a-\epsilon}, \frac{a-\epsilon}{1+a-\epsilon}\right), \quad \text{and} \quad q^2 = (q^2_1, q^2_2) = \left(\frac{a}{1+a}, \frac{1}{1+a}\right).
\]

The initial endowments of the agents in terms of contingent goods are \(e^1 = (1, \theta)\), and \(e^2 = (0, 1)\), so the economic problem is of risk sharing.

Normalizing prices to \(p_1 = p\) and \(p_2 = 1\), and maximizing each agent’s utility subject to the budget constraint, we solve for the demand of good 1 to find:

\[
x_1(p; a - \epsilon, \mu, \theta) = \frac{p^{\mu + \theta}}{p + (a - \epsilon)(1 - p)}, \quad \text{and} \quad y_1(p; a, \mu) = \frac{p^{\mu - 1}}{a^\mu - 1 + p}\mu.
\]

Hence, excess demand in the market for good 1 is:

\[
z_1(p; a, \epsilon, \mu, \theta) = (a - \epsilon)\mu^{-1}p^{\mu - 1}\frac{p^{\mu + \theta}}{1 + (a - \epsilon)p^{\mu - 1}p^\mu} + \frac{p^{\mu - 1}}{a^\mu - 1 + p^\mu} - 1.
\]

The budget restrictions are obviously active. As suggested by Walras’ Law, equilibrium in one market implies equilibrium in the two markets.

We consider the classical tâtonnement process, designated in Arrow and Hurwicz (1958) as the “instantaneous adjustment process”. It is described by the differential equation: \(\dot{p} = z_1(p; a, \epsilon, \mu, \theta)\).

The case considered by Bala (1997), which results in a pitchfork, is similar to the perfectly symmetric economy with \(\epsilon = 0\) and \(\theta = 0\). This yields:

\[
z_1(p; a, \mu) = a^{\mu - 1}p^{\mu - 1}\frac{p}{1 + a^{\mu - 1}p^\mu} + \frac{p^{\mu - 1}}{a^\mu - 1 + p^\mu} - 1.
\]

Observe that \(p = 1\) is an equilibrium price for all values of the parameters \(a\) and \(\mu\) since \(z_1(1; a, \mu) = 0\). Equilibrium price \(p = 1\) undergoes a bifurcation when the bifurcation parameter \(a\) is such that: \(\frac{\partial z_1}{\partial p}(1; a, \mu) = 0\) which occurs for \(a^* = (2\mu - 1)\frac{1}{1-\mu}\).

We also have \(\frac{\partial^2 z_1}{\partial a \partial p}(1, a^*) > 0\), \(\frac{\partial^2 z_1}{\partial p^2}(1, a^*) = 0\), and \(\frac{\partial z_1}{\partial p}(1, a^*) > 0\), for all \(\mu \in [0, 1]\).

4Notice that everything applies to economies with two goods. The consumption of a single good in two states of nature can also be seen as consumption of two goods (Arrow, 1953).

5It is enough to consider the market for good 1, excess demand for good 2 is \(z_2 = -pz_1\).
Hence, from Golubitsky and Schaffer (1985, Prop. II, 9.2) we know that, near \(p = 1 \) and \(a = a^* \), the dynamics of the tatônement are qualitatively equivalent to those of a subcritical pitchfork.\(^6\)

\[
\begin{array}{c}
\text{Figure 1: The pitchfork occurs for } a^* = (2\mu - 1)^{1/(1-\mu)}. \text{ Stability of branches is indicated both by solid lines and by arrows representing price movements.}
\end{array}
\]

However, the pitchfork occurs only in the fully symmetric economy, and is not robust to all perturbations of the original problem. It may be confirmed that our economy is an universal unfolding of the symmetric problem, that is, it includes all the perturbations using as few parameters as possible.\(^7\)

It is known that small perturbations of a problem described by a pitchfork bifurcation may originate different kinds of dynamics. In section 4 we present a qualitative study, but before we provide a numerical example of hysteresis.

3 \ An Illustrative Example

For concreteness, consider \(\mu = 0.8 \) and \(\theta = 0.6 \). Let expectations about the future state of nature be extremely different: use \(a = 0.03 \) and \(\epsilon = -0.04 \), which is equivalent to \(q_1 = (93.5\%, 6.5\%) \) and \(q_2 = (2.9\%, 97.1\%) \).

Solving for equilibrium prices, we obtain three solutions: \(\hat{p} = 0.353 \), \(\bar{p} = 1.150 \) and \(\hat{p} = 4.334 \). The intermediate solution \((\bar{p} = 1.150) \) is unstable, that is, the law of demand is not satisfied, and therefore, a small perturbation of demand is amplified. Prices adjust either to \(\hat{p} = 0.353 \) or to \(\hat{p} = 4.334 \).

\(^6\)There is a coordinate system in which these dynamics are described by \(\dot{x} = x^3 + \lambda x \).

\(^7\)To see this, construct a matrix of partial derivatives as required to apply Golubitsky and Schaffer (1985, Prop. III, 4.4).
To determine prices and equilibrium allocations, we assume that the adjustment process follows continuous trajectories, according to the “instantaneous adjustment process”. This may have multiple interpretations. For example, the trade under study may correspond to one period of the true economy, with endowments and preferences varying each period. The essential assumption is that beliefs are changing and prices adjust in a continuous way.

Suppose that preliminary expectations were such that \(a = 0.02 \) rather than \(a = 0.03 \), corresponding to \(q_1 = (94.3\%, 5.7\%) \) and \(q_2 = (2.0\%, 98.0\%) \). In this economy, equilibrium is unique: \(p = 0.141 \). If the expectations change continuously to reach \(a = 0.03 \), the price that results is \(\dot{p} = 0.353 \).

On the other hand, past expectations such that \(a = 0.04 \), that is, \(q_1 = (92.6\%, 7.4\%) \) and \(q_2 = (3.8\%, 96.2\%) \), produce a different outcome. Equilibrium is also unique, but \(p = 4.043 \). Now if expectations changed continuously to \(a = 0.03 \), the resulting price would be \(\hat{p} = 4.334 \).

![Figure 2: Equilibrium prices for \(\mu = 0.8, \theta = 0.6 \) and \(\varepsilon = -0.04 \). For \(a = 0.02 \) and \(a = 0.04 \) there is only one equilibrium price, \(p = 0.141 \) and \(p = 4.043 \), respectively. For \(a = 0.03 \) there are two stable equilibrium prices given by \(\dot{p} = 0.353 \) and \(\hat{p} = 4.334 \) and one unstable equilibrium price given by \(\bar{p} = 1.150 \).](image)

The economy exhibits hysteresis (path-dependence). Past expectations are a determinant of equilibrium prices.
4 Qualitative Bifurcation Diagrams

In this section, we do the local bifurcation analysis to describe of the qualitative behavior of the generic problem in terms of the unfolding parameters \(\varepsilon \) and \(\theta \). Since we are interested uniquely in small perturbations of the original (symmetric) problem around the bifurcation point, we can, without loss of generality, consider the Taylor polynomial of \(z_1 \) at \((p^*, a^*) = (1, (2\mu - 1)^{-1})\). Furthermore, since a pitchfork is 3-determined (that is, equivalent to its Taylor polynomial of degree 3), it is sufficient to consider Taylor expansion up to order 3. This can be further simplified if we consider the weighted homogeneous setting.\(^8\)

The weighted homogeneous Taylor polynomial of weighted degree 3, with respect to weights \((1, 2)\), at \((p^*, a^*)\) of \(z_1 \) is given by:

\[
G(x, \lambda, \varepsilon, \theta) = a_1 + a_2x + a_3\lambda + a_4x\lambda + a_5x^2 + a_6x^3,
\]

where \(x = p - 1, \lambda = a - a^* \), and the coefficients are functions of the unfolding parameters \(\varepsilon, \theta \), and of the parameter governing risk aversion \(\mu \).

Locally, the tat\'onnement problem is qualitatively equivalent to \(\dot{x} = G(x, \lambda, \varepsilon, \theta) \), and the equilibrium price depends on the values of all three parameters: \(a \) (through \(\lambda \)), \(\varepsilon \) and \(\theta \). The different dynamics that result from perturbations of the symmetric economy are depicted in the bifurcation diagrams of figure 3.\(^9\) The three regions are separated by curves known as bifurcation set, \(\mathcal{B} \) and hysteresis set, \(\mathcal{H} \), defined by:

\[
\mathcal{B} = \{ (\varepsilon, \theta) \in \mathbb{R}^2 : \exists (x, \lambda) : G = G_x = G_\lambda = 0 \};
\]

\[
\mathcal{H} = \{ (\varepsilon, \theta) \in \mathbb{R}^2 : \exists (x, \lambda) : G = G_x = G_{xx} = 0 \}.
\]

Again see Golubitsky and Schaeffer (1985, chapter III, 5.1) for more detail.

The bifurcation diagram between the curves \(\mathcal{B} \) and \(\mathcal{H} \) exhibits the hysteresis behaviour observed in our example.

\(^8\)A function \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is weighted homogeneous of weight \(r \) with respect to a set of weights \((\alpha_1, \alpha_2)\) if \(f(t^{\alpha_1}x_1, t^{\alpha_2}x_2) = t^rf(x_1, x_2) \), for all \(t \in \mathbb{R} \).

\(^9\)A bifurcation diagram is a low-dimension qualitative representation of all equilibria as the parameter varies. Here, bifurcation diagrams are drawn in the \((a, p)\)-plane and branches of equilibria represented by solid lines correspond to stable equilibria whereas dotted lines correspond to unstable values of the equilibrium price.
Figure 3: Bifurcation and hysteresis sets (in bold) in the upper half-plane. Notice that θ represents the endowment of agent 1 in state 2. The bifurcation diagrams drawn (in the (a,p)-plane) remain qualitatively equivalent in each connected component. A solid line in a bifurcation diagram represents stability while a dotted line means the branch consists of unstable equilibria.

Acknowledgements: We are grateful to Carlos Hervés-Beloso and António Brandão for fruitful conversations. Sofia Castro was partially supported by the Centro de Matemática da Universidade do Porto (CMUP), financed by FCT (Portugal) through the programmes POCTI (Programa Operacional “Ciência, Tecnologia, Inovação”) and POSI (Programa Operacional Sociedade da Informação), with national and European Community structural funds. João Correia-da-Silva acknowledges support from Fundação para a Ciência e a Tecnologia and FEDER, III Quadro Comunitário de Apoio.

References

Arrow, K.J., H.D. Block and L. Hurwicz: On the Stability of Competitive Equilibrium,

<table>
<thead>
<tr>
<th>Nº</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>182</td>
<td>Alvaro Aguiar and Manuel M. F. Martins</td>
<td>Testing for Asymmetries in the Preferences of the Euro-Area Monetary Policymaker</td>
<td>Recent FEP Working Papers</td>
<td>July 2005</td>
</tr>
<tr>
<td>181</td>
<td>Joana Costa and Aurora A. C. Teixeira</td>
<td>Universities as sources of knowledge for innovation. The case of Technology Intensive Firms in Portugal</td>
<td>Recent FEP Working Papers</td>
<td>July 2005</td>
</tr>
<tr>
<td>178</td>
<td>Leonor Vasconcelos Ferreira</td>
<td>Dinâmica de Rendimentos, Persistência da Pobreza e Políticas Sociais em Portugal</td>
<td>Recent FEP Working Papers</td>
<td>June 2005</td>
</tr>
<tr>
<td>177</td>
<td>Carlos F. Alves and F. Teixeira dos Santos</td>
<td>The Informativeness of Quarterly Financial Reporting: The Portuguese Case</td>
<td>Recent FEP Working Papers</td>
<td>June 2005</td>
</tr>
<tr>
<td>176</td>
<td>Leonor Vasconcelos Ferreira and Adelaide Figueiredo</td>
<td>Welfare Regimes in the UE 15 and in the Enlarged Europe: An exploratory analysis</td>
<td>Recent FEP Working Papers</td>
<td>June 2005</td>
</tr>
<tr>
<td>175</td>
<td>Mário Alexandre Silva and Aurora A. C. Teixeira</td>
<td>Integrated graphical framework accounting for the nature and the speed of the learning process: an application to MNEs strategies of internationalisation of production and R&D investment</td>
<td>Recent FEP Working Papers</td>
<td>May 2005</td>
</tr>
<tr>
<td>174</td>
<td>Ana Paula Africano and Manuela Magalhães</td>
<td>FDI and Trade in Portugal: a gravity analysis</td>
<td>Recent FEP Working Papers</td>
<td>April 2005</td>
</tr>
<tr>
<td>173</td>
<td>Pedro Cosme Costa Vieira</td>
<td>Market equilibrium with search and computational costs</td>
<td>Recent FEP Working Papers</td>
<td>April 2005</td>
</tr>
<tr>
<td>172</td>
<td>Mário Rui Silva and Hermano Rodrigues</td>
<td>Public-Private Partnerships and the Promotion of Collective Entrepreneurship</td>
<td>Recent FEP Working Papers</td>
<td>April 2005</td>
</tr>
<tr>
<td>170</td>
<td>Óscar Afonso and Alvaro Aguiar</td>
<td>Price-Channel Effects of North-South Trade on the Direction of Technological Knowledge and Wage Inequality</td>
<td>Recent FEP Working Papers</td>
<td>March 2005</td>
</tr>
<tr>
<td>169</td>
<td>Pedro Cosme Costa Vieira</td>
<td>The importance in the papers’ impact of the number of pages and of co-authors – an empirical estimation with data from top ranking economic journals</td>
<td>Recent FEP Working Papers</td>
<td>March 2005</td>
</tr>
<tr>
<td>166</td>
<td>Pedro Cosme Costa Vieira</td>
<td>Multi Product Market Equilibrium with Sequential Search</td>
<td>Recent FEP Working Papers</td>
<td>February 2005</td>
</tr>
<tr>
<td>164</td>
<td>Pedro Cosme Costa Vieira</td>
<td>Animals domestication and agriculture as outcomes of collusion</td>
<td>Recent FEP Working Papers</td>
<td>January 2005</td>
</tr>
<tr>
<td>162</td>
<td>Carlos Alves and Victor Mendes</td>
<td>Self-Interest on Mutual Fund</td>
<td>Recent FEP Working Papers</td>
<td>December 2004</td>
</tr>
<tr>
<td>Nº</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Management: Evidence from the Portuguese Market</td>
<td>Paulo Guimarães, Octávio Figueiredo and Douglas Woodward</td>
<td>November 2004</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Measuring the Localization of Economic Activity: A Random Utility Approach</td>
<td>Ana Teresa Tavares and Stephen Young</td>
<td>October 2004</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Low cost carriers, secondary airports and State aid: an economic assessment of the Charleroi affair</td>
<td>Cristina Barbot</td>
<td>October 2004</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Economics of the Firm and Economic Growth. An hybrid theoretical framework of analysis</td>
<td>Sandra Tavares Silva, Aurora A. C. Teixeira and Mário Rui Silva</td>
<td>September 2004</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Expected Profitability of Capital under Uncertainty – a Microeconomic Perspective</td>
<td>Pedro Rui Mazeda Gil</td>
<td>September 2004</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Local and global dominance conditions for the weighted earliness scheduling problem with no idle time</td>
<td>Jorge M. S. Valente</td>
<td>September 2004</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Private Information: Similarity as Compatibility</td>
<td>João Correia-da-Silva and Carlos Hervés-Beloso</td>
<td>September 2004</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Europe: Looking for a New Model</td>
<td>Rui Henrique Alves</td>
<td>September 2004</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Measuring aggregate human capital in Portugal. An update up to 2001</td>
<td>Aurora A. C. Teixeira</td>
<td>August 2004</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>The evolution of city size distribution in Portugal: 1864-2001</td>
<td>Ana Paula Delgado and Isabel Maria Godinho</td>
<td>July 2004</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Accounting practices for financial instruments. How far are the Portuguese companies from IAS?</td>
<td>Patrícia Teixeira Lopes and Lúcia Lima Rodrigues</td>
<td>July 2004</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Top ranking economics journals impact variability and a ranking update to the year 2002</td>
<td>Pedro Cosme Costa Vieira</td>
<td>June 2004</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Foreign Direct Investment in a Late Industrialising Country: The Portuguese IDP Revisited</td>
<td>Francisco Castro</td>
<td>May 2004</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Comércio Externo e Crescimento da Economia Portuguesa no Século XX</td>
<td>Óscar Afonso and álvaro Aguiar</td>
<td>May 2004</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>O Crescimento da Produtividade da Indústria Portuguesa no Século XX</td>
<td>álvaro Aguiar and Manuel M. F. Martins</td>
<td>May 2004</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Growth Cycles in XXth Century European Industrial Productivity: Unbiased Variance Estimation in a Time-varying Parameter Model</td>
<td>álvaro Aguiar and Manuel M. F. Martins</td>
<td>May 2004</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Beam search algorithms for the early/tardy scheduling problem with release dates</td>
<td>Jorge M. S. Valente and Rui A. F. S. Alves</td>
<td>April 2004</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Filtered and Recovering beam search algorithms for the early/tardy scheduling problem with no idle time</td>
<td>Jorge M. S. Valente and Rui A. F. S. Alves</td>
<td>April 2004</td>
<td></td>
</tr>
</tbody>
</table>

Editor: Prof. Aurora Teixeira (ateixeira@fep.up.pt)
Download available at:
http://www.fep.up.pt/investigacao/workingpapers/workingpapers.htm
also in http://ideas.repec.org/PaperSeries.html