Why Do Central Banks Push for Structural Reforms? The Case of a Reform in the Labor Market

Álvaro Aguiar
Ana Paula Ribeiro

CEMPRE, Faculdade de Economia, Universidade do Porto
Why Do Central Banks Push for Structural Reforms? The Case of a Reform in the Labor Market

Alvaro Aguiar and Ana Paula Ribeiro*
CEMPRE†, Faculdade de Economia, Universidade do Porto

First Draft
February 4, 2008

Abstract

In spite of being mainly concerned with stabilization policies, central banks in many developed countries often advocate the necessity of structural reforms. In turn, demand-side policies - such as monetary policy - can often help improving the political support of reforms (two-handed-approach). By arguing that labor market reforms influence the effectiveness of monetary policy, we assess if central banks have incentives to help promoting such reforms.

In order to identify the channels through which the effects of the reform impinge on the effectiveness of monetary policy, we add stylized features of the labor market to a standard New Keynesian model for monetary policy analysis. In this framework, a labor market reform is modeled as a structural change inducing a permanent shift in the flexible prices unemployment and output levels. The reform-induced adjustments, under different sources of macroeconomic and reform implementation inertias, are then compared across different monetary policy rules.

We find that, in general, labor market reform increases the effectiveness of monetary policy as a demand-management instrument. However, conditional to the presence of different inertias, the reform process can bring about transition stabilization costs, depending on the monetary policy rule. Choosing a particular monetary policy rule, as well as the business cycle timing of the reform, are means to reduce such costs.

Keywords: Monetary policy effectiveness; Monetary policy rules; Labor market reform; New-Keynesian models.

JEL Classification Codes: E24; E52; E58.

*We thank Bennett T. McCallum for invaluable help in setting up the model.
†CEMPRE - Centro de Estudos Macroeconómicos e Previsão - is supported by the Fundação para a Ciência e a Tecnologia, Portugal.
1 Introduction

In spite of being mainly concerned with stabilization policies, central banks in many developed countries often advocate the necessity of reforms in the labor market. In fact, in addition to the more direct gains in macroeconomic efficiency, structural reforms like those in the labor market may also affect the effectiveness of monetary policy. From monetary policy literature we learn that independent and optimizing central banks do not care about the reform’s impact on potential output, as Loss functions reflect only price and output stabilization goals. Therefore, the transition and permanent effects of the reform can affect monetary policymaking only to the extent of their impact on the stabilization role of the monetary authorities. In turn, the implementation of a labor market reform, as any structural reform, can be jeopardized because it often lacks political support. Demand-side policies, such as monetary policy, can often help to improve its political sustainability (Aguiar and Ribeiro, 2007).

In this context, our aim is to quantitatively evaluate the impact of a labor market reform on the effectiveness of the monetary policy and thus, check if central banks have incentives to conduct monetary policies to lend a helping hand to the reform’s political support. Monetary policy effectiveness refers to the central bank’s ability to achieve its stabilization goals. Improvements in effectiveness can occur due to changes in the economic structure, that reduce the cost at which stabilization goals are achieved or, in other words, that improve the stabilization trade off. These gains can occur even when monetary policy is inefficient – i.e., even under non-optimal rules.

As a starting point, in section 2 we describe an economy by using a macro model which combines the main features of the standard New-Keynesian rational-expectations models, widely used in monetary policy analysis, with some specific labor market features. In particular, by including a right-to-manage process of collective bargaining over nominal gross wages, the model yields a flexible-prices equilibrium without labor-market clearing.

Having included some labor market institutions in the model, it is possible to identify instruments of labor market reform. In particular, in section 3, we consider the reduction of the unemployment-benefit replacement ratio as a stylized labor market reform, that can be pre-announced – one-shot or gradually implemented – or unexpected.

In section 4, we first establish the criteria for measurement of the effects of the reform on stabilization costs, and then proceed with its computation, for different macroeconomic and reform implementation scenarios, across different monetary policy rules. In regards to the latter, we allow four alternative hypotheses: optimal monetary policy, under commitment and under discretion, and the Taylor rule, with and without interest-rate smoothing. On the one hand, impacts on stabilization costs may arise during the adjustment periods following reform implementation – reform induced transition costs. On the other hand, by affecting the unemployment-inflation trade off once the economy has fully adjusted, the reform may improve the effectiveness of monetary policy in stabilizing the economy in face of shocks – permanent effects. Evaluation of these impacts is carried out by computing the central bank’s Loss function, in face of reform implementation and in face of demand-side, technology or cost-push shocks.
Final remarks are presented in section 5. We find that, in general, labor market reform reduces the costs of monetary policy as a demand-management device. However, conditional on the presence of different sources of inertia, produced either by the functioning of the goods market or by the reform implementation process, the reform can bring about transition stabilization costs, depending on the monetary policy rule. Choosing a particular monetary policy rule, as well as the business cycle timing of the reform, are means to reduce such costs.

2 A Macroeconomic Model with Labor Market Frictions

In this section we proceed with the description of a model designed to capture the interactions between labor market reform and monetary policy. The model is exhaustively presented in Aguiar and Ribeiro (2007) and thus, is only briefly described here. In particular, we follow the standard New-Keynesian framework modified to include non-clearing labor-market features. The latter affect the non-efficient flexible-price output level, the feasible output level towards which demand-side management policies, namely monetary policy, should be targeted at.

2.1 Households

Consider an infinitely-lived risk-averse individual (i.e., household), representative of the consumers’ behavior in the economy. Enjoying utility from consumption and leisure, the representative household aims at

\[
\max_{C_{t+j}, GB_{t+j+1}} \ E_t \sum_{j=0}^{\infty} \beta^{t+j} \left(\log [C_t(i)] - hC_{t-1}(i) \right) \exp(g_t) - \frac{N_t^{(1+\varphi)}}{1 + \varphi} \\
\text{s.t. } C_{t+j} = \frac{\Pi_{t+j}}{P_{t+j}} + \frac{W_{t+j}}{P_{t+j}}(1 - u_{t+j}) - GB_{t+j+1} \frac{1}{(1 + rr_{t+j})} + GB_{t+j}.
\]

In the utility function, based on Christiano et al’s (2005), \(C \) stands for per capita consumption of a composite final good, \(N \) for the hours worked by the representative individual, \(g \) defines a shock to preferences and \(\beta (0 < \beta < 1) \) is the discount factor. Either being employed or unemployed, the individual supplies a fixed amount of labor, normalized to 1. Effective per capita hours of work, \(N \), are taken as given by the individual, as they are determined by the demand for labor; assuming \(N \leq 1 \), the unemployment rate is \(u = 1 - N \). The index of habit persistence, \(h \geq 0 \), captures the consumers’ wish to smooth both the level and the change in consumption, slowly changing habits, and confers the utility function an appealing form for fitting the data (see, for instance, Smets and Wouters, 2003).

The inter-temporal budget constraint results from a weighted average of the constraints facing the employed and the unemployed and limits real consumption per period.
to the real income raised during current production activity plus the changes in holdings of real risk-free government bonds (GB). Production output is distributed either under the form of labor-related incomes or as profit earnings, Π. As for the former, the representative agent is "homogenized" as if he were partially employed and partially unemployed with probabilities (1 − u) and u, respectively.\(^1\) Thus, the representative agent receives the net of taxes real wage rate, \(\frac{w}{τ}(1 − τ)\), over (1 − u), and the real unemployment benefit rate, \(\frac{bw}{w betting over u}. Given that unemployment benefits are fully tax-financed (a pure Bismarckian system) by the employed, i.e. \(τ = \frac{bw}{w betting}, so as to keep the government budget permanently balanced, average real labor-related income simplifies to \(\frac{w}{τ}(1 − u)\) in (1).

Solving problem (1) we get the following Euler equation for consumption (i.e., the IS function), mimicking the economy’s aggregate demand dynamics.

\[(1 + βh^2)E_t \Delta y_{t+1} = hΔy_t + βhE_tΔy_{t+2} +
+ (1 − βh)(1 − h)(r_t − E_tπ_{t+1} − ρ) −
− (1 − h)(v_t − βhE_tvt_{t+1}).\]

(2)

Where \(Δy_t\) is the change in the (log) of output, defined as \((y_t − y_{t−1})\), \(r_t − E_tπ_{t+1}\) defines the real interest rate \((rr_t)\), and \(v_t = −E_tΔy_{t+1}\) is a demand-side disturbance.\(^2\) The constant \(ρ = −log β\) is the time discount rate and corresponds to the steady-state equilibrium real interest rate in the absence of secular growth (see, below, equation 13, in 3.2).

2.2 Firms

In what concerns the production side, we assume a standard New-Keynesian optimizing setup including inflation inertia.

As in Aguiar and Ribeiro (2007), there is a continuum of differentiated intermediate-goods, \(Y_i, i ∈ [0, 1]\), aggregated into a composite final good, \(Y\). The corresponding flexible general price index is a constant markup, \(μ\), over nominal marginal costs.

Inflation inertia, which is essential to account for the observed inflation persistence and to avoid counterfactual dynamics (see, for instance, Estrella and Fuhrer, 2002), is obtained by combining a discrete version of Calvo’s (1983) price adjustment mechanism as proposed in Galí (2003) with Amato and Laubach’s (2003) non-optimizing price setters. The argument is based on costly re-optimization, which incentives agents to use simple rules of thumb, occasionally, as an alternative to price optimization. In this context, the representative firm faces a constant probability of adjusting its prices in each period, \((1 − θ)\), independently of when prices were last adjusted; however, only a fraction \((1 − ω)\) of price-resetting firms optimize in a forward looking manner, while the remaining ones (fraction \(ω\)) follow a backward-looking rule of thumb.

\(^1\)Once distributional issues are not of concern, this weighted average is the simplest way of taking into account heterogeneous agents within a homogeneous representative agent framework.

\(^2\)Hereafter, lowercase variables refer to logs of the correspondent uppercase variables.
The resulting price dynamics - following, among others, Goodfriend and King (1997) and Gali et al (2001) - can be expressed in the approximate log form:

$$\frac{\theta + \omega(1 - \theta)}{(1 - \theta)(1 - \omega)} \pi_t - \frac{\omega}{(1 - \theta)(1 - \omega)} \pi_{t-1} =$$

$$= \frac{\alpha}{\alpha + \varepsilon (1 - \alpha)} \log \mu + \frac{(1 - \theta \beta)}{\alpha + \varepsilon (1 - \alpha)} \sum_{j=0}^{\infty} (\theta \beta)^j E_t m c_{t+j} + \sum_{j=1}^{\infty} (\theta \beta)^j E_t \pi_{t+j},$$

with $E_t m c_{t+j}$ and $E_t \pi_{t+j}$ standing, respectively, for the log of expected real marginal costs and the expected inflation rate for period $t + j$, conditional on the information available at time t.

2.3 Labor Market - Collective Bargaining

The need for reforming the labor market arises from the existence of institutional arrangements that prevent full employment. We model, as in Aguiar and Ribeiro (2007), an imperfectly competitive labor market characterized by Labor Turnover Costs (LTCs) associated with insider-outsider turnover and which might explain why firms do not substitute outsiders for insiders at lower wages (Lindbeck and Snower, 1988).\(^3\)

In particular, we consider that workers of a given firm (insiders, with bargaining power arising from LTCs) form a labor union to negotiate over wages alone.\(^4\) Firm and union bargain over gross nominal wages, W_i, according to the following Nash bargaining problem:

$$\max_{W_{it}} \left[P_{it} Y_{it} - W_{it} N_{it} \right]^{(1-\Gamma)} \left[W_{it} - W_{out_t} \right]^\Gamma [S_{it}(W_{it})]^\Gamma$$

s.t.

(production function) $Y_{it} = A_t(N_{it})^\alpha$, $\alpha < 1$

(outside option) $W_{out_t} = F_t W_t + (1 - F_t) b W_t = (1 - u_t + u_t b) W_t.$

where Γ represents the union's bargaining power; $S_{it}(W_i)$ stands for the probability of insiders' survival in the firm, capturing the adverse effects of wage claims on the firm's competitiveness and thus, directly on exposure to unemployment (Calmfors and Driffill, 1988).

The utility of each bargaining party is derived from the rent of effective income over the respective "fallback" (i.e., the income each party gets if agreement fails). The first term within square brackets captures the instantaneous utility for the firm, while

\(^3\)The existence of LTCs underlying the insider-outsider theory provides a foundation for insiders’ market power, instead of the ad hoc definition as imperfect competition in wage setting (as, for instance, in Gali, 2003).

\(^4\)We simplify the functional form of the union’s utility by assuming risk neutrality. This does not conflict with the household’s risk aversion, since the essential feature is that both the union’s and the household’s utility increase with wages.
the remaining terms in the maximand refer to the union’s instantaneous utility. The union’s “fallback”, \(W_{out} \), represents the insiders’ outside-option earnings: an average of the wage and the unemployment benefit average rates \((W, bW)\), weighted, respectively, by the probability of finding a job outside the \(i\)th firm \((F_i)\) and the probability of not finding a job elsewhere \((1 - F_i)\). As in Bovenberg et al (2000), we take the unemployment rate, \(u\), as a good proxy for \((1 - F_i)\).

Assuming symmetry across firms, the optimal solution to problem (4) leads to the following aggregate wage offer curve:

\[
\frac{W_t}{P_t} = \left[1 + \frac{1}{\Gamma} \frac{1 - \frac{\alpha}{\mu}}{1 - \frac{1}{u_t} - \epsilon_{SN}(1 - \frac{\alpha}{\mu})^{-1}} \right]^{-1} A_t (N_t)^{(\alpha-1)}, \tag{5}
\]

where \(\epsilon_{SN}\) stands for the, constant, elasticity of the survival probability with respect to employment.

Equation 5 shows that real wages depend, among others, on labor market-specific institutional features – the unemployment-benefit ratio, \(b\), and the workers’ bargaining power, \(\Gamma\), which are potential policy instruments for a reform.

In each period, following the bargaining outcome, the firm chooses the employment level, taking wages as given, \(i.e.,\) we assume the right-to-manage approach to wage formation. \(6\)

2.4 Flexible-Price Equilibrium

The flexible-price (FP) equilibrium output refers to the output level that would be achieved under no price rigidity, given the above defined structure of the labor and the goods markets. Thus, the FP-equilibrium output (as well as the corresponding FP-equilibrium unemployment rate) would clear a labor market characterized by the wage offer curve (equation 5) and by the labor demand that would result if all firms could freely adjust prices at any period.

\[
\bar{u_t} = \pi = \frac{(\mu - \alpha)\Gamma}{\alpha(1 - \Gamma) + \Gamma \epsilon_{SN} \mu(1 - b)}; \tag{6}
\]

\[
\tilde{y_t} = -\alpha \bar{u} + a_t. \tag{7}
\]

Where the dashed variables, \(\bar{u}_t\) and \(\tilde{y}_t\) refer to values at the respective FP-equilibrium levels. \(7\)

The FP-equilibrium unemployment rate increases with the unemployment-benefit replacement ratio \((b)\), the relative power of the union in wage bargaining \((\Gamma)\), and the degree of monopolistic competition in the market for intermediate goods \((\mu)\). Thus, a

\(5\)For a detailed exposition of the derivation of the Nash bargaining, see Belot and van Ours (2004).

\(6\)We assume that bargaining occurs in every period, so that nominal wage stickiness is absent.

\(7\)Hereafter, dashed variables with time subscript refer to FP equilibrium levels, while dashed variables without time subscript stand for their respective steady-state levels.
supply-side policy - for instance, a labor market reform that reduces \(b \) - pushes the FP output level closer to its efficient level, \(y^*_t = a_t \).

The aggregate supply (AS), however, needs to account for actual firm’s pricing behavior (i.e., under price and inflation inertia, equation 3). Using (3) together with the definition of real marginal cost deviations from its FP level (\(\bar{mc}_t = mc_t - \bar{mc}_t \)), the inflation dynamics (AS) equation follows:

\[
\pi_t = \gamma^f E_t \{ \pi_{t+1} \} + \gamma^h \pi_{t-1} + k_1 \tilde{y}_t + u_t, \quad u_t = \lambda(d_1 \Delta \Gamma_t + d_3 \Delta b_t + u'_t) \tag{8}
\]

where \(\tilde{y}_t \equiv y_t - \bar{y}_t \)

\[
d_1 = \frac{1}{(\overline{\tau} + 1)(1 - \Gamma)\Gamma};
\]

\[
d_2 = \frac{\Gamma}{(\overline{\tau}^2 + \overline{\tau})(1 - \Gamma)(1 - b)\bar{u}^2};
\]

\[
d_3 = \frac{1}{(\overline{\tau}^2 + \overline{\tau})(1 - \Gamma)(1 - b)^2 \bar{u}};
\]

\[
k_1 = \lambda \frac{d_2}{\alpha};
\]

\[
\lambda = \frac{(1 - \theta)(1 - \beta \theta)(1 - \omega) \alpha}{\theta + \omega[1 - \theta(1 - \beta)]}[\alpha + \varepsilon(1 - \alpha)];
\]

\[
\gamma^b = \frac{\omega}{\theta + \omega[1 - \theta(1 - \beta)]}; \quad \gamma^f = \frac{\beta \theta}{\theta + \omega[1 - \theta(1 - \beta)]} \quad \text{and}
\]

\[
\bar{q} = q(\Gamma, b, \bar{u}).
\]

Unless an unexpected reform affecting either of the parameters occurs, \(\Delta b_t = \Delta \Gamma_t = 0 \): unexpected changes in the unemployment–benefit ratio or in the relative wage bargaining power of the parties affect inflation in a similar way to the cost-push shock (\(u'_t \)).

We can now sum up the model in regard to the structure describing the economy: (i) the aggregate demand function derived from the households’ behavior (equation 2); (ii) the aggregate supply function (equation 8); and (iii) the flexible-price output dynamics (equation 7).

To close the model we need next to account for the behavior of authorities in charge of monetary policy. This enables the use of the model to analyze the interaction between a demand-side stabilization policy and a structural, supply-side, policy.

8The presence of habit persistence (\(b > 0 \)) usually affects the aggregate-supply function as Amato and Laubach (2004) show. However, this does not apply to our case due to the assumption of constant labor supply (see 2.1., above).

9More generally, unexpected components of structural reforms provide additional theoretical foundation for the presence of cost-push shocks in the New-Keynesian Phillips curve.
2.5 Monetary Policy

We assume that monetary policy is the only demand-side management policy available and that the policy maker is an independent central bank (CB).

Theoretically, the policy maker would behave optimally in a way to maximize the utility of the representative agent. However, the literature on monetary policy conducting shows a widespread consensus that central banks follow simple rules instead (see, for instance, Taylor, 1999 and Galf, 2003). Nonetheless, optimal policy performs a useful role in benchmarking simple rules. For instance (and for our purposes), optimal policies provide results on welfare costs that are useful for the evaluation of non-optimal rules.

Optimal monetary policy (OMP) Following the demonstration by Amato and Laubach (2003) and under inflation inertia, the optimal monetary policy (OMP) solutions are obtained by solving the problem faced by the monetary authorities:

\[
\begin{align*}
\text{Min}_{t+j} & \quad L = E_t \sum_{j=0}^{\infty} \beta^j \left[\pi_t^2 + \omega_{\tilde{y}} \tilde{y}_{t+j}^2 + \omega_\pi (\pi_{t+j} - \pi_{t+j-1})^2 \right] \\
\text{s.t.} & \quad \pi_t = \gamma^t E_t \left\{ \pi_{t+1} \right\} + \gamma^h \pi_{t-1} + k_1 \tilde{y}_t + u_t, \quad k_1 > 0 \\
& \quad \omega_{\tilde{y}} = \frac{(1 + \varphi) \lambda_L}{\varepsilon \alpha}, \quad \omega_\pi = \frac{\omega}{(1 - \omega) \theta} \quad \text{and} \quad \lambda_L = \frac{(1 - \beta \theta)(1 - \theta)}{\theta},
\end{align*}
\]

where the constraint refers to the AS function derived in 2.4, above; it captures the inflation-output-gap stabilization trade-off faced by the central banks when responding to cost-push shocks (u_t).

Following Clarida et al (1999), the discretionary solution under inflation inertia cannot be analytically determined, except in the case of fully backward looking inflation indexation. It is possible, however, to illustrate the discretionary behavior (OMP-D) if we assume a specific backward-looking rule for private-sector expectations about inflation. Under this assumption, optimization of the intertemporal Loss yields

\[
\begin{align*}
\tilde{y}_t &= -\frac{k_1}{w_{\tilde{y}}(1 - a_\pi \beta)} \pi_t - \frac{k_1}{w_{\tilde{y}}} w_\pi (\pi_t - \pi_{t-1}) \\
& \quad \text{with} \quad \pi_t = a_\pi \pi_{t-1} + a_u u_t, \quad 0 \leq a_\pi < 1
\end{align*}
\]

where today’s monetary policy affects current and future time path of inflation. Thus, the policy responds not only to current but also to forecasts inflation into the indefinite future (Clarida et al, 1999). The \(a_\pi\) parameter is obtained by using the method of undetermined coefficients.

\footnote{The government is assumed to be neutral, with a passive role exclusively related with income distribution: it collects taxes to pay for the unemployment benefits, constrained to keeping a balanced budget (recall \(\tau\), above, in 2.1.).}
If, however, the central bank can commit to a plan and thus influences, with credibility, the private sector expectations, optimization, respecting the "timeless perspective" commitment (OMP-C), leads to

\[
\pi_t + \omega_\pi (\pi_t - \pi_{t-1}) - \beta \omega_\pi (E_t \{\pi_{t+1}\} - \pi_t) = \frac{\omega_{\tilde{y}}}{k_1} \left(\tilde{y}_t - \frac{\gamma_f}{\beta} \tilde{y}_{t-1} - \beta \gamma^b E_t \{\tilde{y}_{t+1}\} \right). \tag{11}
\]

Taylor Rule (TR) Regarding non-optimal policies, several authors have proposed a variety of simple rules as a guideline for monetary policy conducting and for assessing its performance across different models. These simple rules can, in general, be summarized in the following instrument rule (e.g., McCallum, 2001):

\[
r_t = (1 - \rho_r) \left[\rho + \phi_x \pi_t + \phi_y (y_t - \overline{y}_t) \right] + \rho_r r_{t-1} \quad \phi_x, \phi_y > 0, \quad \rho_r \in (0, 1), \tag{12}
\]

where \(r_t \) stands for the nominal interest rate, \(\pi_t \) for the inflation rate (assuming a zero-inflation target), \(\rho \) is the constant steady-state real interest rate, and \(\rho_r \) stands for the nominal interest rate smoothing parameter.\(^{11}\)

3 Effects of a Labor Market Reform on Monetary Policy Effectiveness

In this section we aim at evaluating the impact of a labor market reform on the stabilization role of monetary policy. On the one hand, active stabilization is warranted to optimize the adjustment of the economy induced by the implementation of the reform (transition stabilization costs). On the other hand, the reform changes the structure of the economy including the propagation of shocks and, thus, the effectiveness of monetary policy as a stabilization device (permanent effects). In order to measure these effects, it is necessary to define, first, a stylized labor-market reform.

3.1 A Stylized Labor Market Reform - The Case of Unemployment Benefits

Labor market reforms have two major positive macroeconomic effects: by increasing real wage flexibility, (i) reforms improve stabilization of cost-push shocks and (ii) reduce equilibrium unemployment, thus, increasing the flexible-price output. Saint-Paul and Bentolila (2001) refer to these as the "increasing the economy’s adjustment potential" and the "increasing the economy’s average performance" effects, respectively. While the latter is a required outcome for a successful labor market reform, the first effect is crucial to affect the effectiveness of monetary policy as a macroeconomic stabilization tool.

\(^{11}\)Interest rate smoothing draws strong empirical support from the practice of central banks, even if it still lacks a robust theoretical formalization. For an exhaustive review on interest rate smoothing see, for example, Sack and Wieland (2000).
Labor market reforms often refer to a comprehensive set of measures aimed at changing labor market institutions (see, for example, OECD, 2006). We take, for simplification, a reduction in unemployment benefits as a relevant stylized reform: apart from the role of the benefits as a state-provided insurance device, its reduction improves competition in the labor market, thereby increasing real wage flexibility which, in turn, is key to deliver both macroeconomic effects. Through wage formation, unemployment benefits also affect equilibrium unemployment: lower unemployment benefits reduce the outside option for the employed, thus lowering the bargained wage and equilibrium unemployment. This is unambiguously captured in our model’s definition of equilibrium unemployment (equation 6, above), in line with both theoretical and empirical studies.12

In this context, we model, as a baseline, a stylized reform process consisting of an one-shot pre-announced reduction in the unemployment benefit ratio \((b)\). As in Aguiar and Ribeiro (2007), we also consider two additional cases: a gradual implementation process and an unexpected one-shot reform. While the gradual implementation process adds more generality to the analysis, the unexpected case is a simple way of introducing uncertainty regarding the extent of the reform.

The proposed scenarios for the economic structure and reform processes, as well as the corresponding calibration (described in the Appendix), are used next to compute the impact of the reform on the effectiveness of monetary policy as a macroeconomic stabilization tool.

\section{3.2 Transition Stabilization Costs}

The evaluation of transition costs considers the impact that the adjustments exclusively induced by reform implementation have on stabilization costs.

We explore the adjustments to a reduction by 10 percentage points in the unemployment-benefit replacement ratio (from 0.7 to 0.6), for the three reform processes as exposed just above. Also, the adjustments are studied under different assumptions for monetary policy conducting: following OMP rules, either through discretionary or commitment behavior, or following the Taylor rule. In regards to OMP conducting we assume, as default, \(\omega_y = 0.01\), which translates into a 3.8\% annualized weight put on output gap stabilization, corresponding to a more inflation averse central bank. When results are expected to be sensible to the relative weight put on price stabilization, we also consider outcomes under the extreme opposite case - \(\omega_y = 1\), a 80\% annualized weight put on output gap stabilization, corresponding to a less inflation averse central bank.

Table 1 shows the evaluation of the stabilization costs implied by the adjustments to the reform, with values referring to the Loss times \(10^5\). The arguments of the Loss functions are calculated through reform-induced impulse responses, computed up until

12See the assessment by Aguiar and Ribeiro (2007), concluding that, in contrast with other labor market reforms, a reduction in the unemployment benefits unambiguously reduces equilibrium unemployment.
full adjustment is achieved. In lines 1 and 6 the underlying economic structure is characterized by no-habit persistence and no-inflation inertia. In particular, line 1 depicts the baseline scenario: one-shot pre-announced reform implemented in the inertia-free economic structure. The scenarios in lines 2 through 5 refer to the one-shot pre-announced reform under various inertias in the economic structure.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>weight of output stabilization ω</th>
<th>change in Loss (Loss 10^5)</th>
<th>OMP</th>
<th>TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Baseline</td>
<td>0.01 and 1</td>
<td>C 0 0 0.697 0.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Habit formation (h=0.7)</td>
<td>0.01</td>
<td>D 0 0 20.433 18.700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Inflation inertia</td>
<td>0.01 and 1</td>
<td>No smoothing 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Habit formation (h=0.7)</td>
<td>0.01</td>
<td>Smoothing 0 0 0.335 0.254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and inflation inertia ($\gamma=0.5$)</td>
<td>I 0 0 20.200 19.982</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Habit formation (h=0.7)</td>
<td>0.01</td>
<td>1 0 0 0.599 0.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and lower inflation inertia ($\gamma=0.27$)</td>
<td>I 0 0 19.996 18.723</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Unexpected Reform</td>
<td>0.01</td>
<td>1 0.251 0.232 0.328 0.332</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Transition Stabilization Costs caused by the Reform

In the case of the pre-announced reform processes, reform implementation leads to short-run adjustments similar to those implied by a negative demand-side shock – this view of reform as a recession is also noted by Saint-Paul (2006). The announced reduction in b directs expectations to a higher FP output level, thus increasing the output gap, and leads to price reduction due to a fall in nominal bargained wages caused by the unemployment-benefit reduction. Unexpected reforms, in contrast, exhibit patterns of cost-push shock adjustments.

Next we analyze in detail the adjustments under each case.

Adjustments to a pre-announced reforms The announcement of the reform leads agents to expect b to take the new value, immediately, such that $\Delta b_t = 0$ in equation 8. Because a pre-announced reform leads to short-run effects on the macroeconomic variables similar to those of a negative demand-side shock, there is no trade off between inflation and output gap stabilization constraining the implementation of OMP. Either under commitment or discretion, with private agents fully internalizing the monetary authorities stabilization objectives ($\pi_t = \tilde{\pi}_t = 0$), OMP ensures full short-run stabilization and, thus, reform brings about no transition costs (lines 1 to 5, Table 1).

In contrast, if the economic structure is characterized by habit persistence in consumption and/or in the presence of gradual reform implementation, Taylor rules, which are non-optimal, fail to deliver full macroeconomic stabilization of the short-run reform effects.
The main implication of macroeconomic inertias derives from the presence of consumption smoothing \((h > 0\), recall equation 2): private demand impulse is not sufficient to immediately promote the new \(\bar{\pi}\). From equation 2, as FP unemployment rate falls – given the fall in \(b\), \(\bar{\pi}_t\) increases and long-run real interest rate (\(\bar{\pi}_r\)) decreases in the period of reform implementation,

\[
\bar{\pi}_t = \rho + h_1 E_t \{\Delta \bar{\pi}_{t+1}\} + h_2 E_t \{\Delta \bar{\pi}_{t+2}\} + \frac{1}{(1 - \beta h)} [v_t - \beta h E_t \{v_{t+1}\}],
\]

(13)

where \(h_1 \equiv \frac{(1 + \beta h^2)}{(1 - \beta h)(1 - h)}; h_2 \equiv \frac{\beta h}{(1 - \beta h)(1 - h)}; h_3 \equiv \frac{h}{(1 - \beta h)(1 - h)}; h_1 + h_2 + h_3 = 1.

with \(\Delta \bar{\pi}_t > 0\) and \(E_t \Delta \bar{\pi}_{t+1} = E_t \Delta \bar{\pi}_{t+2} = 0\), because reform is one-shot. The change in \(\bar{\pi}\) keeps current real interest rate above the FP equilibrium level, refraining consumption and causing a negative output gap which warrants an active expansionary monetary policy alongside with the reform.

Under OMP, the expansionary policy lowers nominal interest rate (exactly matching the fall in the long-run equilibrium real interest rate) immediately pushing demand to the new \(\bar{\pi}\). Just as in the inertia-free scenario, OMP ensures immediate equilibrium with \(\pi_t = \bar{\pi}_t = 0\) and, thus, no stabilization costs occur (Table 1, line 2).

Under TR, adjustment of the effective output to the new, higher, \(\bar{\pi}\), is sluggish, as the effective interest rate adjusts only partially, in each period, to the new, lower, \(\bar{\pi}\). Therefore, firms do not expect policy to immediately push demand to the new \(\bar{\pi}\), thereby laying the ground for inertia effects to operate. Real wages remain lower than the new FP level because employment pressure is only gradual whereas unemployment benefits reduction is immediate. Therefore, actual and expected marginal costs are lower and prices follow. Since the adjustment is gradual, the expansionary monetary policy involves transition stabilization costs, which are lower if the TR includes smoothing (Table 1, line 2). Moreover, stabilization costs move directly with the degree of habit formation (result not reported in Table 1).

If inflation sluggishness is the only source of macroeconomic inertia, any policy rule that penalizes deviations of inflation and/or output from targets drives demand to fully adjust to the new \(\bar{\pi}\) and firms have no incentive for changing prices: immediate stabilization occurs. However, the mix of inflation inertia, habit persistence and non-optimal policy produces differences in adjustment costs. Figure 1 shows the effects of combining both inertias: with the addition of inflation inertia, deflation effects and the fall in the nominal interest rate are smaller, output overshoots, but adjustment takes longer. Therefore, even though inflation inertia per se does not influence stabilization costs (line 3 in Table 1), it can actually lower stabilization costs, when combined with habit formation, namely if the central bank is inflation averse \((\omega_{\pi} = 0.01\), in lines 4 and 5).13

13Inflation is less sensible to the output gap when inflation inertia is strong, thus lowering inflation variability.
A more general version of the pre-announced reform is to consider that implementation is gradual. Following the specification in Aguiar and Ribeiro (2007), where a gradual reduction in b leads to a gradual increase in \bar{y}, we have also run simulations with different degrees of inertia in reform implementation. Given that a gradual reform process generates, in each period, expectations of future increases in FP output (due to pre-announcement), a restrictive policy is warranted. In results, not reported in Table 1, OMP delivers, as in the previous cases, full adjustment to each new \bar{y}, while under TR the response to the rise in the long-run real interest rate is not as restrictive, therefore accommodating some inflation, with output temporarily above the FP-equilibrium level. These stabilization costs increase with the length of the implementation process and interest rate smoothing, when the CB is more inflation averse, is less painful.

Adjustments to an unexpected reform An unexpected reform – a surprise in the first period and fully perceived from then on – can be interpreted as an extreme case of uncertainty regarding the extent of the reform. In contrast with the pre-announced one, it works as a positive cost-push shock that, unexpectedly, reduces marginal costs from the implementation period onwards. In this context, differences in adjustments to reform arise not only between optimal and non-optimal monetary policy, but also between optimal discretionary (OMP-D) and optimal with commitment (OMP-C).

Line 6 of Table 1 shows OMP-D delivering lower stabilization costs than OMP-C. This seemingly odd result stems from the fact that the monetary authority, to whom the reform is also unexpected, responds, in the first period, to the output gap relative to the pre-reform FP-output level; while the evaluation of stabilization costs refers to the new
FP level.

Compared with OMP, TR implies lower stabilization costs, if the CB cares primarily about output-gap stabilization. The reason behind this dominance is related, again, to the reform being unexpected to the monetary authority. The effect of responding to the output gap relative to the pre-reform FP output level, is amplified when more weight is attached to output-gap stabilization.

Line 6 also shows that, in contrast with the previous cases, interest rate smoothing increases stabilization costs. In a context where the more expansionary the policy is, the faster is the recovery to the new FP equilibrium, smoothing dampens the magnitude of the policy response in the first period; since active policy does not extend to the following periods in the absence of inertias in the economic structure, smoothing is unambiguously less expansionary.

3.3 Permanent Effects on the Costs of Stabilization Policy

Over the long run, the reform yields the target inflation rate with higher output. Since the level of the latter is not an apparent concern for the CB, the case for a reform is seemingly irrelevant for the monetary authority. However, the labor market reform, by improving real wage flexibility and the inflation-output gap trade-off, also permanently impacts on the effectiveness of monetary policy as a demand-management device.

In what follows, we compute the stabilization costs faced by the CB, in order to assess if they are reduced or amplified once the reform takes full effect. Assuming that economies are hit by three types of shocks, we evaluate stabilization costs across alternative scenarios and under different monetary policy rules.

Unlike transition stabilization costs of the adjustments to the reform, to evaluate the permanent effects on stabilization costs we need to evaluate the infinite horizon intertemporal Loss function for given properties of the shocks. For this purpose we re-scaled the Loss function, as proposed in Rudbusch and Svensson (1999). With \(\beta \to 1 \),

\[
\lim_{\beta \to 1} (1 - \beta)(L) = E(L_t) = \text{var}(\pi_t) + \omega_y\text{var}(\tilde{y}_t) + \omega_\pi \left[\text{var}(\pi_t - \pi_{t-1}) \right].
\]

(14)

Where \(L_t \) stands for the period Loss function, \(L_t = \pi_t^2 + \omega_y\tilde{y}_t^2 + \omega_\pi(\pi_t - \pi_{t-1})^2 \), and \(L = E_0 \left[\sum_{t=0}^{\infty} \beta^t L_t \right] \).

In order to evaluate \(E(L_t) \), output-gap and inflation variability must be determined conditional upon the variability of shocks. We follow the standard practice, by considering three types of shocks: (i) demand-side \((v_t)\) and (ii) cost-push \((u_t)\) shocks (recall equations 2 and 8, respectively), assumed to follow a white-noise process with zero mean and standard-deviations of \(\sigma_v \) and \(\sigma_u \), respectively; and (iii) a temporary technological shock, \(a_t \) (equation 7), modeled as a first order autoregressive process, with innovation characterized by a zero mean and standard-deviation of \(\sigma_a \) (see, for instance, Mccallum and Nelson, 1999 and 2004).\(^{14}\) The values for the parameters characterizing these

\(^{14}\)The temporary nature of the technology shock is appropriate in the context of macroeconomic
processes are taken from McCallum and Nelson (2004), and they respect to a model
close to our calibration. Values for σ_v and σ_u are set at 0.02 and 0.005, respectively,
while the autocorrelation parameter and the standard deviations of the technology shock
innovation are set at 0.95 and 0.007, respectively.

To compute Losses, we have analytically determined the second moments of the
endogenous variables, applying the asymptotic formulas presented in Hamilton (1994,
pp. 264-6). The methodology requires the definition of the endogenous variables as a
function of the predetermined and the exogenous ones, that is, the standard form of the
solution to rational expectations models. Table 2, shows the stabilization costs of the
simple combination of the three types of shocks, under different rules of monetary policy,
comparing the steady state with ($b = 0.6$) and without ($b = 0.7$) reform.

In general, the reform improves the effectiveness of monetary policy – most of the
changes in Loss in Table 2 are welfare improving. The patterns in Table 2, though, show
that the magnitude (in terms of percentual change in Loss), and sometimes the sign of
the permanent effects of the reform on stabilization costs, depend not only on the policy
rule and on the relative weight that the CB puts on price stabilization, but also on the
scenarios for economic structure inertia.\footnote{In addition to the scenarios reported in Table 2, we have also considered other (lower) degrees of
habit formation and inflation inertia, with coherent results.} In addition, the nature of each shock also
influence the results. A more detailed view of the reform effects, including the analysis
of each type of shock is, thus, in order. In what follows, we proceed, comparing the
impacts under optimal monetary policy with those under the Taylor rule.\footnote{From here on, gains/costs of reform refer to percentual change in Loss.}

Optimal monetary policy (OMP) Under optimal plans, either with discretionary
or commitment behavior, the labor market reform has positive effects across all the
scenarios. These gains, related exclusively to the adjustments to cost-push shocks, arise
from the improved trade-off between inflation and output-gap stabilization.

Table 2 shows that, as expected - since cost-push are the only relevant shocks under
OMP - the discretionary solution delivers always higher stabilization costs than those
under commitment. Across all scenarios, reform stabilization gains increase with the
relative weight put on price stabilization – i.e., the improvement in the trade-off is
sharper when the CB is more inflation averse, as inflation control comes at lower output
stabilization costs. In general, reform induces higher gains under OMP-D than under
commitment, if more weight is put on inflation stabilization.

Gains from reform do not depend on the degree of habit-formation, but they change
with inflation inertia. The reason is straightforward – OMP fully insures against demand-
side inertia and, thus, the CB’s optimal response is independent of the degree of habit-
formation; however, because inflation inertia directly affects the CB’s restriction, policy
responses to cost-push shocks depend on the degree of AS inertia. For example, if the
CB is inflation averse, inflation inertia increases gains under commitment (from 9.8% to
10.3%) while lowering gains under discretion (from 12.3% to 10.8%).

\footnote{In addition to the scenarios reported in Table 2, we have also considered other (lower) degrees of
habit formation and inflation inertia, with coherent results.}

\footnote{From here on, gains/costs of reform refer to percentual change in Loss.}
<table>
<thead>
<tr>
<th>Scenarios / Policy Rules</th>
<th>Stabilization Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without reform (b=0.7)</td>
</tr>
<tr>
<td></td>
<td>sd(ygap)</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>OMP-C</td>
<td>m=0.01</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>OMP-D</td>
<td>m=0.01</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>TR</td>
<td>No smoothing</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td></td>
<td>Smoothing</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>Habit persistence (b=0.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OMP-C</td>
<td>m=0.01</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>OMP-D</td>
<td>m=0.01</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>TR</td>
<td>No smoothing</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td></td>
<td>Smoothing</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>Habit persistence (b=0.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OMP-C</td>
<td>m=0.01</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>OMP-D</td>
<td>m=0.01</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td>TR</td>
<td>No smoothing</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
<tr>
<td></td>
<td>Smoothing</td>
</tr>
<tr>
<td></td>
<td>m=1</td>
</tr>
</tbody>
</table>

Table 2: Permanent Effects of a Reform on Stabilization Costs caused by a combination of Cost-push, Demand-side and Technology Shocks
Table 3: Permanent Effects of the Reform on Stabilization Costs caused by each type of Shock, under the Taylor Rule

Demand-side shocks

<table>
<thead>
<tr>
<th></th>
<th>without reform (b=0.7)</th>
<th>with reform (b=0.6)</th>
<th>permanent effects of the reform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sd(x)</td>
<td>sd(ygap)</td>
<td>sd(Δx)</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.0008</td>
<td>0.0168</td>
<td>33.8</td>
</tr>
<tr>
<td>Habit persistence (b=0.7)</td>
<td>0.0008</td>
<td>0.0070</td>
<td>0.0</td>
</tr>
<tr>
<td>Inflation inertia (γ^2=0.5)</td>
<td>0.0002</td>
<td>0.0175</td>
<td>0.0001</td>
</tr>
<tr>
<td>Combined inertias (b=0.7, γ=0.5)</td>
<td>0.0005</td>
<td>0.0070</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Technology Shocks

<table>
<thead>
<tr>
<th></th>
<th>without reform (b=0.7)</th>
<th>with reform (b=0.6)</th>
<th>permanent effects of the reform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sd(x)</td>
<td>sd(ygap)</td>
<td>sd(Δx)</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.0004</td>
<td>0.0006</td>
<td>2.0</td>
</tr>
<tr>
<td>Habit persistence (b=0.7)</td>
<td>0.0010</td>
<td>0.0052</td>
<td>0.0</td>
</tr>
<tr>
<td>Inflation inertia (γ^2=0.5)</td>
<td>0.0001</td>
<td>0.0014</td>
<td>0.0001</td>
</tr>
<tr>
<td>Combined inertias (b=0.7, γ=0.5)</td>
<td>0.0002</td>
<td>0.0054</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Cost-push Shocks

<table>
<thead>
<tr>
<th></th>
<th>without reform (b=0.7)</th>
<th>with reform (b=0.6)</th>
<th>permanent effects of the reform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sd(x)</td>
<td>sd(ygap)</td>
<td>sd(Δx)</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.0047</td>
<td>0.0063</td>
<td>226.5</td>
</tr>
<tr>
<td>Habit persistence (b=0.7)</td>
<td>0.0049</td>
<td>0.0088</td>
<td>0.0</td>
</tr>
<tr>
<td>Inflation inertia (γ^2=0.5)</td>
<td>0.0171</td>
<td>0.0415</td>
<td>0.0090</td>
</tr>
<tr>
<td>Combined inertias (b=0.7, γ=0.5)</td>
<td>0.0180</td>
<td>0.0290</td>
<td>0.0092</td>
</tr>
</tbody>
</table>

sd: standard deviation

Taylor Rule (TR)

Under TR, the reform affects stabilization costs arising from the three types of shocks, not necessarily with uniform impacts. Table 3 decomposes the effects of the combined shocks reported in Table 2 for the non-smoothed TR, by assuming that the economies are hit only by each type of shock.

In general, in face of demand-side or technology shocks, the reform produces ambiguous permanent effects on stabilization costs: in both cases, reform improves output gap variability and worsens inflation variability. As for cost-push shocks, the reform impacts are unambiguously positive: both inflation and output gap variability are, broadly, reduced. Combining the three shocks, in the baseline scenario, losses may occur for a CB that attaches a large weight to price stabilization, or if demand and(or) technology shocks dominate.

Regarding the other scenarios, in Table 2, the degree of habit formation reduces, while the inflation inertia amplifies, the gains of the reform. For sufficiently high IS inertia and large weight put on price stabilization, the reform may even increase costs – as in the case of h = 0.7 and ω_f = 0.01 in the table, with a 2.3% increase in Loss; adding inflation inertia reverts this loss – reform gains of 5.5% in the last panel of the table.

By inspection of Table 3, habit formation both dampens the gains and increases the costs of stabilization induced by the labor market reform: on the one hand, the higher the inertia, output variability gains are lower while inflation variability is higher in face of demand-side and technology shocks; on the other hand, the higher the inertia, the smaller the reform stabilization gains in the adjustment to cost-push shocks. We can also conclude that (larger) losses (than in the inertia-free scenario) may occur for a strongly inflation averse CB, or if demand and(or) technology shocks dominate.
As for the higher stabilization gains in the inflation inertia scenario (relative to baseline), they result from lower stabilization costs of demand and technology shocks and higher gains in face of costs-push shocks (Table 3); while, in absolute terms, the gains unambiguously outweigh the costs.17

Regarding smoothed TR, Table 2 shows that, across all scenarios, interest rate smoothing not only reduces interest rate volatility – as expected – but also improves stabilization when the CB is strongly inflation averse (compare the levels of Loss with and without smoothing). As for the permanent effects with smoothing, reform always improves demand-side management, unlike some cases with the non-smoothed TR (compare the changes in Loss with and without smoothing).

Finally, it is worthwhile to compare the generally positive permanent effects with the transition costs of reform (compare the changes in Loss in Table 2 with the ones in Table 1). The latter are clearly outweighed by the former, indicating that, over time, reform yields net positive gains for the stabilization role of the CB, even when transition costs occur.

4 Final Remarks

Using a reduction in the unemployment benefit replacement ratio as a stylized labor market reform, we find that, in general, once adjustment is completed, it permanently increases the effectiveness of monetary policy, \textit{i.e.}, it permanently improves the stabilization policy trade-off. However, reform implementation may generate transition stabilization costs. We show that the impacts of the reform on stabilization costs are sensible to the inertias characterizing aggregate demand and supply, the reform processes, the monetary policy rule and to the relative weight central banks put on price stabilization. These results provide insight for the interactions between demand-side stabilization policies and structural reforms.

Unless the reform is unexpected, following an optimal policy rule avoids transition costs. However, transition costs arise under the Taylor-type rule, which is non-optimal. These stabilization costs rise with (i) the time it takes for reform implementation, (ii) the degree of uncertainty about the extent of the reform, and (iii) the importance of habit persistence in consumption; while decreasing with the degree of inflation inertia for an inflation averse central bank.

Considering, in turn, the permanent effects on stabilization costs, we conclude that, in general, central banks gain with the reform. Under optimal policies, the highest gains arise when the central bank exhibits strong preferences for price stabilization. Therefore, independent (optimizing) and inflation averse central banks are expected to strongly advocate the necessity of structural reforms.

When transition costs are present – under non-optimal rules –, they are likely to be outweighed by permanent gains, in general (with the exception of a high degree of habit

17Notice that the dominance of gains with inflation inertia still holds even when combined with habit formation. From the results in Table 3, losses would only occur if cost-push shocks accounted for less than 0.5\% of the shocks hitting the economy.
formation coupled with a highly inflation averse central bank). In our simulations, this balance is maximized when:

(i) the non-optimal rule includes smoothing,
(ii) the central bank is strongly inflation averse and inflation inertia is high, or
(iii) the central bank is strongly inflation prone and both habit persistence and inflation inertia are high.

Still regarding non optimal rules, our results also uncover three additional motivations for smoothing interest rates: (i) under inflation averse central bank preferences, it reduces the Loss, even when it is not an objective de per se; (ii) smoothing reduces transition stabilization costs of the announced, one-shot, reform; and, (iii) smoothing dominates the simple Taylor rule in what respects the permanent monetary policy effectiveness gains from reform.

Although we conclude that, in general, reform induces net positive stabilization gains, some notes are in order.

First, the balance between permanent effects and transition costs depends on the magnitude and the frequency of the different types of shocks hitting the economy as well as on the magnitude of the reform – which has not been systematically scrutinized yet. Saint-Paul and Bentolila (2001), for instance, argue that reforms are often of a larger magnitude than the shocks hitting the economy.

Second, in addition to improving monetary policy as a demand-side management device, reform permanently improves macroeconomic efficiency as well, even though this is not explicitly considered in central banks’ objectives.

In any case, transition stabilization costs can be dampened through transitory changes in monetary policy rules and by choosing the right phase of the cycle to implement reform. For instance, moving closer to optimal rules lowers, in general, stabilization costs; and the most favorable phase of the cycle occurs when stabilization effects of the shocks hitting the economy are opposite to the ones arising from reform implementation.

We conclude that, as it improves monetary policy effectiveness, central banks are expected to push for labor market reform. Moreover, from a political economy perspective, it is less costly for a more effective central bank to sustain policy independence.

Appendix: Model Calibration

The values for the set of parameters are chosen with a view to the Euro area. We start by combining the calibration proposed in Moyen and Sahuc (2005) with Gali (2003), and then use other additional sources. Table 4 presents the values.

For the labor market specific parameters, we set an indicative European after-reform replacement ratio of 60% and also a value of 0.4 for the elasticity of survival with respect to the expected number of insiders - based on Layard et al (1991), pages 514 and 105, respectively. Labor intensity and the relative power of firms in the bargaining process are chosen as to get a reasonable equilibrium unemployment rate – \(\pi \) in equation (6) –, around 6%. The low value for \(\Gamma \) is supported by the low and decreasing degree of
<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price elasticity of demand</td>
<td>ε</td>
<td>11</td>
</tr>
<tr>
<td>Quarterly discount factor</td>
<td>β</td>
<td>0.99</td>
</tr>
<tr>
<td>Probability of firms not changing prices in a given period</td>
<td>θ</td>
<td>0.83</td>
</tr>
<tr>
<td>Unemployment-benefit replacement ratio</td>
<td>b</td>
<td>0.6</td>
</tr>
<tr>
<td>Elasticity of the survival probability with respect to employment</td>
<td>ε_{SN}</td>
<td>0.4</td>
</tr>
<tr>
<td>Labor intensity</td>
<td>α</td>
<td>0.9</td>
</tr>
<tr>
<td>Technology index</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>Union's bargaining power</td>
<td>Γ</td>
<td>0.1</td>
</tr>
<tr>
<td>Low/High habit formation</td>
<td>h</td>
<td>0.5 / 0.7</td>
</tr>
<tr>
<td>Low/High inflation inertia</td>
<td>γ</td>
<td>0.27 / 0.5</td>
</tr>
<tr>
<td>Low/High relative weight on output stabilization in the Loss function</td>
<td>ω_y</td>
<td>0.01 / 1</td>
</tr>
<tr>
<td>Inflation feedback parameter</td>
<td>ϕ_π</td>
<td>0.5</td>
</tr>
<tr>
<td>Output-gap feedback parameter</td>
<td>ϕ_y</td>
<td>0.125</td>
</tr>
<tr>
<td>Interest rate smoothing parameter</td>
<td>ρ_r</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 4: Baseline Parameter Calibration

unionism in European countries (see, for instance, Blanchard, 2004, p. 26).\(^{18}\) As for α, instead of the more commonly used value of 1, we set it slightly below, since we need a decreasing marginal productivity of labor for wage bargaining to exhibit a trade-off between real wage and employment level.

As for the scenarios including habit formation, the evidence in Christiano et al. (2001) and in Fuhrer (2000) clearly point to a high degree of persistence. Our values have been chosen closer to Christiano et al.’s (2001), given that we adopt their theoretical formulation.

For the calibration of the inflation inertia, the lower value of the AS coefficient in Table 4 has been chosen in coherence with Gali et al.’s (2001, p. 1257) value of $\omega = 0.3$, which, according to the authors, ensures a good replication of the European inflation dynamics. Whereas the higher value, implying $\omega = 0.82$, follows Fuhrer and Moore (1995).

In respect to monetary policy, we consider two types of central banks: an inflation averse CB, that attaches a high value to price stabilization, and an inflation prone CB, that mostly cares about output stabilization. These values are taken from McCallum and Nelson (2004). For the non-optimal interest rate rule we chose the original Taylor’s feedback parameters, while taking the interest rate smoothing parameter from McCallum

\(^{18}\)Cahuc et al. (2002) estimate a bargaining power of about 0.2 in France, a result consistent with others using Canadian and British datasets. Note, however, that the average unemployment rate was, during the estimation period, around 10% in France (see, for instance, Nickell and Layard, 1999).

References

Moyen, Stéphane and Jean-Guillaume Sahuc (2005), "Incorporating Labour Market Frictions into an Optimizing-Based Monetary Policy Model", *Economic Modelling*, Vol. 22, No 1, pp. 159-186

<table>
<thead>
<tr>
<th>Nº</th>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>Jorge M. S. Valente and José Fernando Gonçalves</td>
<td>A genetic algorithm approach for the single machine scheduling problem with linear earliness and quadratic tardiness penalties</td>
<td>January 2008</td>
</tr>
<tr>
<td>263</td>
<td>Ana Oliveira-Brochado and Francisco Vitorino Martins</td>
<td>Determining the Number of Market Segments Using an Experimental Design</td>
<td>January 2008</td>
</tr>
<tr>
<td>262</td>
<td>Ana Oliveira-Brochado and Francisco Vitorino Martins</td>
<td>Segmentação de mercado e modelos mistura de regressão para variáveis normais</td>
<td>January 2008</td>
</tr>
<tr>
<td>260</td>
<td>João Correia-da-Silva</td>
<td>Agreeing to disagree in a countable space of equiprobable states</td>
<td>January 2008</td>
</tr>
<tr>
<td>259</td>
<td>Rui Cunha Marques and Ana Oliveira-Brochado</td>
<td>Comparing Airport regulation in Europe: Is there need for a European Regulator?</td>
<td>December 2007</td>
</tr>
<tr>
<td>258</td>
<td>Ana Oliveira-Brochado and Rui Cunha Marques</td>
<td>Comparing alternative instruments to measure service quality in higher education</td>
<td>December 2007</td>
</tr>
<tr>
<td>257</td>
<td>Sara C. Santos Cruz and Aurora A.C. Teixeira</td>
<td>A new look into the evolution of clusters literature. A bibliometric exercise</td>
<td>December 2007</td>
</tr>
<tr>
<td>256</td>
<td>Aurora A.C. Teixeira</td>
<td>Entrepreneurial potential in Business and Engineering courses ... why worry now?</td>
<td>December 2007</td>
</tr>
<tr>
<td>255</td>
<td>Alexandre Almeida and Aurora A.C. Teixeira</td>
<td>Does Patenting negatively impact on R&D investment?An international panel data assessment</td>
<td>December 2007</td>
</tr>
<tr>
<td>254</td>
<td>Argentino Pessoa</td>
<td>Innovation and Economic Growth: What is the actual importance of R&D?</td>
<td>November 2007</td>
</tr>
<tr>
<td>253</td>
<td>Gabriel Leite Mota</td>
<td>Why Should Happiness Have a Role in Welfare Economics? Happiness versus Orthodoxy and Capabilities</td>
<td>November 2007</td>
</tr>
<tr>
<td>251</td>
<td>Argentino Pessoa</td>
<td>FDI and Host Country Productivity: A Review</td>
<td>October 2007</td>
</tr>
<tr>
<td>250</td>
<td>Jorge M. S. Valente</td>
<td>Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs</td>
<td>October 2007</td>
</tr>
<tr>
<td>248</td>
<td>Mário Alexandre P. M. Silva</td>
<td>Aghion And Howitt’s Basic Schumpeterian Model Of Growth Through Creative Destruction: A Geometric Interpretation</td>
<td>October 2007</td>
</tr>
<tr>
<td>245</td>
<td>Fernando A. C. C. Fontes and Dalilla B. M. M. Fontes</td>
<td>Optimal investment timing using Markov jump price processes</td>
<td>July 2007</td>
</tr>
<tr>
<td>244</td>
<td>Rui Henrique Alves and Óscar Afonso</td>
<td>Fiscal Federalism in the European Union: How Far Are We?</td>
<td>July 2007</td>
</tr>
<tr>
<td>243</td>
<td>Dalilla B. M. M. Fontes</td>
<td>Computational results for Constrained Minimum Spanning Trees in Flow Networks</td>
<td>June 2007</td>
</tr>
<tr>
<td>242</td>
<td>Álvaro Aguier and Inês Drumond</td>
<td>Business Cycle and Bank Capital: Monetary Policy Transmission under the Basel Accords</td>
<td>June 2007</td>
</tr>
<tr>
<td>241</td>
<td>Sandra T. Silva, Jorge M. S. Valente and Aurora A. C. Teixeira</td>
<td>An evolutionary model of industry dynamics and firms’ institutional behavior with job search, bargaining and matching</td>
<td>April 2007</td>
</tr>
<tr>
<td>Nº</td>
<td>Title</td>
<td>Authors</td>
<td>Publication Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>238</td>
<td>An exact approach for single machine scheduling with quadratic earliness and tardiness penalties</td>
<td>Jorge M. S. Valente</td>
<td>February 2007</td>
</tr>
<tr>
<td>237</td>
<td>Monetary Policy and the Political Support for a Labor Market Reform</td>
<td>Álvaro Aguiar and Ana Paula Ribeiro</td>
<td>February 2007</td>
</tr>
<tr>
<td>236</td>
<td>Heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties</td>
<td>Jorge M. S. Valente and Rui A. F. S. Alves</td>
<td>February 2007</td>
</tr>
<tr>
<td>234</td>
<td>Heuristics for the single machine scheduling problem with early and quadratic tardy penalties</td>
<td>Jorge M. S. Valente</td>
<td>December 2006</td>
</tr>
<tr>
<td>232</td>
<td>Surveying structural change: seminal contributions and a bibliometric account</td>
<td>Ester Gomes da Silva and Aurora A. C. Teixeira</td>
<td>November 2006</td>
</tr>
<tr>
<td>231</td>
<td>Do low cost carriers have different corporate governance models?</td>
<td>Carlos Alves and Cristina Barbot</td>
<td>November 2006</td>
</tr>
<tr>
<td>230</td>
<td>Long term evolution of the size distribution of Portuguese cities</td>
<td>Ana Paula Delgado and Isabel Maria Godinho</td>
<td>September 2006</td>
</tr>
<tr>
<td>229</td>
<td>On the divergence of evolutionary research paths in the past fifty years: a comprehensive bibliometric account</td>
<td>Sandra Tavares Silva and Aurora A. C. Teixeira</td>
<td>September 2006</td>
</tr>
<tr>
<td>228</td>
<td>Public-Private Sector Partnerships in Developing Countries: Prospects and Drawbacks</td>
<td>Argentino Pessoa</td>
<td>September 2006</td>
</tr>
<tr>
<td>227</td>
<td>An evolutionary model of firms’ institutional behavior focusing on labor decisions</td>
<td>Sandra Tavares Silva and Aurora A. C. Teixeira</td>
<td>August 2006</td>
</tr>
<tr>
<td>225</td>
<td>Local sustainable mobility management. Are Portuguese municipalities aware?</td>
<td>Catarina Monteiro and Aurora A. C. Teixeira</td>
<td>August 2006</td>
</tr>
<tr>
<td>224</td>
<td>Of the significance of business relationships</td>
<td>Filipe J. Sousa and Luís M. de Castro</td>
<td>July 2006</td>
</tr>
</tbody>
</table>

Editor: Sandra Silva (sandras@fep.up.pt)
Download available at:
http://www.fep.up.pt/investigacao/workingpapers/workingpapers.htm
also in http://ideas.repec.org/PaperSeries.html