Financial Liberalization and International Business Cycle

Fabrizio Perri
University of Minnesota

Vincenzo Quadrini
University of Southern California

December 10, 2007

VERY PRELIMINARY AND INCOMPLETE

Abstract

The majority of OECD countries has experienced a reduction in macroeconomic volatility during the last two decades. This period is also characterized by a gradual liberalization of the capital accounts of from these countries. The goal of this paper is to study whether capital markets liberalization can lead to lower macroeconomic volatility. We study a business cycle model with multiple countries and financial market frictions and characterize the conditions under which financial liberalization leads to lower aggregate volatility.

1 Introduction

The United States is not the only country to have experienced a reduction in macroeconomic volatility during the last two decades. With different degrees and timing, a majority of OECD countries have experienced lower aggregate volatility. See for example Cecchetti, Flores-Lagunes, & Krause (2006). At the same time, during the last 20 years, most of the OECD countries have gradually relaxed restrictions on the international mobility of capital. Direct
or indirect indicators of financial openness all point to a significant increase in capital mobility. See for example Obstfeld & Taylor (2004).

Are the two patterns related? In particular, is lower volatility the consequence, at least in part, of capital account liberalization? Using quarterly data for the OECD countries we show that capital account liberalization has led to lower volatility of GDP growth. This finding is consistent with the earlier results of Bekaert, Harvey, & Lundblad (2006) which are based on annual data. They find that financial liberalization and, especially, equity market liberalization, is mostly associated with lower consumption volatility in advanced economies.¹

Motivated by the empirical findings, we investigate the theoretical channel through which financial liberalization can lead to greater macroeconomic stability. We construct a multi-country business cycle model with financial market frictions. We consider two types of shocks. In addition to the typical TFP shocks, we allow for shocks that affect directly the price of assets. These shocks are transmitted to the real sector of the economy through the credit channel as they affect the ability to borrow of the business sector.

Within this model we show that, if country-specific shocks are not perfectly correlated across countries, financial liberalization reduces the macroeconomic volatility of the liberalizing countries. The magnitude of the decline depends on the prevalence of the two shocks as driving forces of the business cycle. If the business cycle is predominantly driven by TFP shocks, then financial liberalization leads to a small decline in volatility. However, if asset price shocks contributes significantly to the business cycle, then financial liberalization leads to a large drop in macroeconomic volatility. In the limiting case of small open economies and asset price shocks being the only source of macroeconomic volatility, the output of a country becomes constant after liberalization. Another prediction of the model is that liberalization leads to greater cross-country correlation in output. The increase in cross-country co-movement is consistent with the empirical finding of Imbs (2006) and it is specially strong when asset price shocks are an important driving force of the business cycle.

In addition to capturing the decline in macroeconomic volatility and the increase in cross-country correlation of output, the model also provides a theoretical framework for understanding how asset price shocks in one country

¹This is in contrast to ‘commercial liberalization’. Cecchetti et al. (2006) find weak evidence that increased commercial openness has coincided with increased output volatility.
affect the economies of other countries (contagion).

The paper is structured as follows. Section 2 presents the main empirical findings motivating the paper. Section 3 presents the model and characterizes some of the general equilibrium properties when economies are not financially integrated. The analysis of the open economy and, by comparison, the effect of financial liberalization, will be conducted in Section 4. Section 5 concludes.

2 Empirical motivation

The main motivation of the paper starts from the observation that, during the last two decades, industrialized countries have gradually liberalized their capital account. During the same period, these countries have also experienced a decline in the volatility of the business cycle. Although the decline started at different times, it is observed for the majority of these countries. The goal of this section is to document these two patterns.

The analysis is conducted using the sample of OECD countries during the period 1970-2004. The main variables of interest are an index of macroeconomic volatility and an index of capital account openness. For the first we use the standard deviation of quarterly GDP growth computed over a particular time window. For example, if we use a four-year window, the volatility of GDP in the first quarter of 1980 is calculated using data from 1978.1 to 1982.1, for a total of 17 quarters.

For the capital account openness we use the index compiled by Chinn & Ito (2005). The index is based on binary dummy variables that codify the tabulation of restrictions on cross-border financial transactions reported in the IMF’s Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER). The dummy variables reflect the four major categories of restrictions: multiple exchange rates, restrictions on current account transactions, restrictions on capital account transactions, and requirements for the surrender of export proceeds. The index is the first standardized principal component of these four variables and it takes higher values for countries that are more open to cross-border capital transactions.

The Chinn and Ito index is available for the period 1970-2005 at the annual frequency. Because GDP data is available at the quarterly frequency, we transform the annual series of capital account openness to a quarterly frequency by assuming that the value in each infra-year quarter is equal to the annual value.
Figure 1 plots the index of volatility and openness averaged across the OECD countries. The volatility index is constructed using a four-year window. The openness index is lagged by 9 quarters. In this way the variable precedes the first observation used to compute the volatility index. The figure clearly shows that the two series move in the opposite directions. The next step is to conduct a more systematic analysis taking advantage of the longitudinal (cross-sectional and time-series) structure of the data.

![Graph showing financial liberalization and macroeconomic volatility. Average of OECD countries.](image-url)

Figure 1: Financial liberalization and macroeconomic volatility. Average of OECD countries.

We estimate a regression equation where the index of volatility of each country is linearly dependent on the capital account openness. To take into account country specific characteristics, we include a country fixed effect. We also include a dummy for each quarterly date to account for possible common trends. The value of the openness index is for the first quarter before the time window used to calculate the volatility index. For example, if we use a four-year window, then the volatility in 1980.1 is calculated using growth rates for the period 1978.1-1982.1 and the openness index is for 1977.4.

The estimation results for several time windows are reported in Table 1. Independently of the number of observations we use to compute the volatil-
ity in GDP growth, the estimated coefficient of capital account openness is negative and statistically significant.

Table 1: Financial liberalization and macroeconomic volatility in the OECD countries. Fixed effect regression of GDP Volatility on Capital Account Openness.

<table>
<thead>
<tr>
<th>Time window</th>
<th>Two years</th>
<th>Three years</th>
<th>Four years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital account openness</td>
<td>-0.977</td>
<td>-0.959</td>
<td>-1.027</td>
</tr>
<tr>
<td>(\text{R}^2) (within)</td>
<td>0.122</td>
<td>0.128</td>
<td>0.144</td>
</tr>
<tr>
<td>(\text{R}^2) (between)</td>
<td>0.145</td>
<td>0.143</td>
<td>0.161</td>
</tr>
<tr>
<td>(\text{R}^2) (overall)</td>
<td>0.117</td>
<td>0.118</td>
<td>0.122</td>
</tr>
<tr>
<td>Observations</td>
<td>2,671</td>
<td>2,471</td>
<td>2,273</td>
</tr>
</tbody>
</table>

Notes: GDP volatility is the standard deviation of quarterly GDP growth for OECD countries over the particular time window. Capital account openness is the index compiled by Chinn & Ito (2005) from the IMF’s Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER). The value of the index is for the first quarter before the time window used to compute the GDP volatility. The regression also includes a dummy for each calendar date.

* Significant at 1 percent level.

3 Model

We first describe the closed-economy version of the model which we then extended to a multi-country setup. There are two sectors. The ‘business’ sector populated by a continuum of risk neutral entrepreneurs and the ‘workers’ sector populated by a continuum of risk-averse workers. We first describe the business sector.
3.1 Financial and production decisions of firms

In the business sector there is a mass $m > 1$ of entrepreneurs with utility $E_0 \sum_{t=0}^{\infty} \beta^t c_t$. At each point in time only a mass 1 of entrepreneurs are active while the others are (temporarily) inactive. Active entrepreneurs run a firm with revenue function $F(z_t, l_t)$, where l_t is the input of labor and z_t is a stochastic variable affecting the productivity of all firm (aggregate productivity). There is no capital. The production function is concave and displays decreasing returns to scale.

Over time there is turnover of entrepreneurs (firms). With probability $1 - q$ active entrepreneurs lose the ability to generate profits and are replaced by inactive entrepreneurs (who become active). One way to interpret this environment is to assume that there is a fixed number of locations or markets. An active entrepreneur has the monopoly of one of these locations. With some probability $1 - q$ the monopoly is gained by another entrepreneur. For example because one of the inactive entrepreneurs finds a competitive product that pushes out of the market an existing business. The probability q is stochastic and follows a first order Markov process with transition probability $\Gamma(q, q')$. As we will see shortly, fluctuations in q affect the value of active firms, and therefore, they act as aggregate asset price shocks.

Firms can borrow at the market interest rate. The repayment of the debt is conditional on survival. If the firm survives it repays b_{t+1} otherwise it pays zero. Therefore, given r_t the market interest rate, the gross rate charged to the firm is $R_t = (1 + r_t)/q_t$.\footnote{This can be justified by an enforceability condition. If the firm becomes unproductive, there is nothing that the lender can take from the firm.}

Firms start the period with debt b_t and, given the individual and aggregate states, they choose the labor input, l_t, the new debt, b_{t+1}, and make payments to shareholders and workers, d_t and $w_t l_t$ respectively. The budget constraint is:

$$b_t + d_t = F(z_t, l_t) - w_t l_t + b_{t+1}/R_t.$$

Liabilities are constrained by limited enforcement as the firm can divert the revenue $F(z_t, l_t)$ and default. At the beginning of the period the firm hires labor and pays wages and dividends. Therefore, at this stage, the net liabilities are $b_t + d_t + w_t l_t$. After the realization of the revenue at the end of the period, the net liabilities are $b_t + d_t + w_t l_t - F(z_t, l_t) = b_{t+1}/R_t$.\footnote{This can be justified by an enforceability condition. If the firm becomes unproductive, there is nothing that the lender can take from the firm.}
Let $V_t(b_t)$ be the value of the firm for the entrepreneur, defined as:

$$V_t(b_t) \equiv E_t \sum_{j=0}^{\infty} \beta^j \left(\Pi_{t=0}^{j-1} q_{t+\ell} \right) d_{t+j}$$

where the term in parenthesis accounts for the fact that the entrepreneur retains the ability to generate dividends only with some probability.

Because the firm can renegotiate the debt after diverting the revenue, the value of defaulting is $F(z_t, l_t) + \kappa$, where κ is the value retained by the firm in the renegotiation stage. This value depends on the bargaining power of the firm and on the cost faced by the lender in liquidating the firm. It captures the degree of enforceability of debt contracts. This expression derives from the solution of the renegotiation game played by the firm and the lender, which is described in the appendix.

Enforcement requires that the value of not defaulting is at least as big as the value of defaulting, that is,

$$\beta q_t EV_{t+1}(b_{t+1}) \geq F(z_t, l_t) + \kappa.$$

Notice that the decision to default takes place after the payment of dividends. Therefore, the value of not defaulting is the continuation value $\beta q_t EV_{t+1}(b_{t+1})$.

The retention probability q plays a crucial role in the enforcement constraint. In particular, a fall in q reduces the value of the firm and leads to a tighter constraint. In order to satisfy the enforcement constraint the firm has to reduce the debt b_{t+1}. This, in turn, requires a reduction in the current payout d_t, that is, greater entrepreneurial savings.

Firm’s problem: The optimization problem of a surviving firm can be written recursively as follows:

$$V(s; b) = \max_{d, l, b'} \left\{ d + \beta q EV(s'; b') \right\}$$

subject to:

$$b + d = F(z, l) - wl + \frac{b'}{R}$$

$$\beta q EV(s'; b') \geq F(z, l) + \kappa$$
where \(s \) are the aggregate states and prime denotes the next period variable.

In solving this problem, the firm takes as given all prices. Remembering that \(R = (1 + r)/q \), the first order conditions are:

\[
F_t(z, l) = \frac{w}{1 - \mu} - \mu \beta (1 + r) = 1, \tag{2}
\]

\[
(1 + \mu) \beta (1 + r) = 1, \tag{3}
\]

where \(\mu \) is the lagrange multiplier for the enforcement constraint. These conditions are derived under the assumption that the solution for the dividend is always positive, that is, \(d > 0 \). This condition holds in the neighborhood of the steady state. The detailed derivation is in Appendix B.

We can see from condition (2) that limited enforcement imposes a wedge in the hiring decision. This wedge is strictly increasing in \(\mu \) and disappears when \(\mu = 0 \), that is, when the enforcement constraint is not binding.

The second condition shows that \(\mu \), and therefore, the wedge, are decreasing in the real interest rate. This dependence will be key for understanding the properties of the model. As we will see, a negative shock to \(q \), that is, a negative asset price shock makes the enforcement constraint tighter and this reduces the demand for debt. The reduction in the demand for debt, in turn, reduces the interest rate. Condition (3) then implies that the reduction in the real interest rate is associated with an increase in \(\mu \) and, from condition (2), a reduction in the demand for labor.

The intuition underlaying the channel through which the interest rate affects employment can be explained as follows. In the margin, the cost of hiring labor has two components. The first is the wage \(w \). The second, captured by \(\mu \), derives from the fact that more labor makes the enforcement constraint tighter. Consequently, if the firm wants to hire more labor, it has to pay less dividends to the entrepreneur (lower consumption). But, as long as the entrepreneur discounts the future at a higher rate than the interest rate, retaining funds in the firm is costly. The cost of retaining funds is equal to \(1 - \beta (1 + r) \), that is, the difference between the value of consuming the extra unit today and the discounted value of consuming it tomorrow. More specifically, by retaining an extra unit today, the entrepreneur will consume \(1 + r \) in the next period which has a current expected value of \(\beta (1 + r) \). Therefore, when the interest rate increases, the cost of retaining funds in the firm becomes smaller and this reduces the indirect cost of hiring more
labor. Fundamentally, a higher interest rate increases the incentive of the entrepreneur to save and this relaxes the enforcement constraint. In the general equilibrium, the change in the firms’ policies also affects the wage rate w. We expect a fall in both, the wage rate w and the employment l. To derive the aggregate effects we need to close the model and derive the general equilibrium.

3.2 Closing the model and general equilibrium

We now describe the remaining parts of the model and define the general equilibrium. First we specify the market structure and technology leading to the revenue function $F(z, l)$. We then describe the problem solved by workers.

Production and market structure: The market structure and technology is similar to Farmer (1999). Each firm produces an intermediate good x_i that is used in the production of final goods:

$$Y = \left(\int_0^1 x_i^\eta di\right)^{\frac{1}{\eta}}.$$

The inverse demand function for good i is $v_i = Y^{1-\eta} x_i^{\eta-1}$, where v_i is the price of the intermediate good and $1/(1-\eta)$ is the elasticity of demand.

The intermediate good is produced only with labor according to:

$$x_i = z l_i^\nu$$

where ν determines the returns to scale in the production technology. The general properties of the model do not depend on the value of ν. However, the case $\nu > 1$ is of interest because the model can also generate pro-cyclical endogenous fluctuations in productivity. Increasing returns can be interpreted as capturing, in simple form, the presence of fixed factors and variable capacity utilization.

Given the wage w, the revenues of firm i, $v_i x_i$, can be written as:

$$F(z, l_i) = Y^{1-\eta} (z l_i^\nu)^{\eta}.$$

The decreasing returns property of the revenue function is obtained by imposing $\eta \nu < 1$. In equilibrium, $l_i = L$ for all firms and $Y = z L^\nu$. Therefore,
the aggregate production function is homogenous of degree ν. Notice that the model embeds as a special case the environment with perfect competition. This is obtained by setting $\eta = 1$ and $\nu < 1$. In this case the concavity of the revenue function derives from the concavity of the production function.

Workers: There is a continuum of homogeneous workers with lifetime utility $E_0 \sum_{t=0}^{\infty} \delta^t U(c_t, h_t)$, where c_t is consumption, h_t is labor and δ is the intertemporal discount factor. We assume that $\delta > \beta$, that is, workers have a lower discount rate than entrepreneurs. This is the key condition for the enforcement constraint to bind most of the time. Workers hold a diversified portfolio of bonds issued by firms. This is the only form of savings for workers.

The utility function is specified as $U(c_t, h_t) = (c_t - \alpha h_t^\gamma / \gamma)^{1-\sigma} / (1 - \sigma)$ where $1 / (\gamma - 1)$ is the elasticity of labor supply. This specification allows for the derivation of some results analytically but it is not essential for the main properties of the model.

The budget constraint is:

$$w_t h_t + b_t = c_t + \frac{b_{t+1}}{1 + r_t}$$

and the first order conditions with respect to labor, h_t, and next period bonds, b_{t+1}, are:

$$h_t = \left(\frac{w_t}{\alpha} \right)^{\frac{1}{\gamma - 1}} \quad (4)$$

$$1 = \delta (1 + r_t) E_t \left(\frac{U_c(c_{t+1}, h_{t+1})}{U_c(c_t, h_t)} \right) \quad (5)$$

These are standard optimization conditions for the household’s problem. The first condition defines the supply of labor as an increasing function of the wage rate. The second condition defines the interest rate.

General equilibrium: We can now define a competitive equilibrium. The sufficient set of aggregate states, s, are given by the productivity, z, the survival probability, q, and the aggregate stock of bonds.

3Diversification is important because the repayment of the bonds from each individual firm is conditional on their survival.
Definition 3.1 (Recursive equilibrium) A recursive competitive equilibrium is defined by a set of functions for (i) households’ policies \(h(s) \), \(c(s) \), \(b(s) \); (ii) firms’ policies \(l(s; b) \), \(d(s; b) \) and \(b(s; b) \); (iii) firms’ value \(V(s; b) \); (iv) aggregate prices \(w(s) \) and \(R(s) \); (v) law of motion for the aggregate states \(s' = H(s) \). Such that: (i) household’s policies satisfy the optimality conditions (4)-(5); (ii) firms’ policies are optimal and \(V(s; b) \) satisfies the Bellman’s equation (1); (iii) the wage and interest rates are the equilibrium clearing prices in the labor and bond markets; (iv) the law of motion \(H(s) \) is consistent with individual decisions, the stochastic process for \(q \) and the monetary policy rule.

3.3 Some characterization of the equilibrium

To illustrate the main properties of the model, it will be convenient to look at some special cases in which the equilibrium can be characterized analytically. Consider first the version of the economy without shocks. In this deterministic economy the default constraint is always binding in the steady state. Next, if the cash revenue cannot be diverted, changes in the survival probability \(q \) have no effect on employment.

Proposition 3.1 The no-default constraint binds in a deterministic steady state.

In a deterministic steady state, the first order condition for the bond, equation (5), becomes \(\delta(1 + r) = 1 \). Using this condition to eliminate \(1 + r \) in (3), we get \(1 + \mu = \delta/\beta \). Because \(\delta > \beta \) by assumption, the lagrange multiplier \(\mu \) is greater than zero, implying that the enforcement constraint is binding.

In a model with uncertainty, however, the constraint may not be always binding. For the enforcement constraint to be always binding we further need to impose that \(\beta \) is sufficiently smaller than \(\delta \).

Proposition 3.2 If the firm revenue cannot be diverted, changes in \(q \) have no effect on employment \(l \).

If firms cannot divert the cash revenues, the enforcement constraint becomes \(\beta Eq'V(s_{t+1}, b_{t+1}) \geq \kappa \). In this case the demand for labor from condition (2) becomes \(F_l(z, l) = w \), and therefore, it depends only on the wage
rate. Because the supply of labor depends on \(w \) (see condition (4)), employment and production will not be affected by fluctuations in \(q \). Changes in the value of firms affect the real interest rate and the allocation of consumption between workers and entrepreneurs but they do not affect employment.

This result no longer holds when the revenue is divertible. In this case the demand for labor depends on the tightness of the enforcement constraint. An increase in the value of firms relaxes the enforcement constraint allowing for more borrowing. The change in the demand for credit impacts on the (expected) real interest rate. Then using conditions (2) and (3) we can see that the demand for labor changes. Given the supply (equation (4)), this leads to a change in employment and output.

4 Open economy

We now extend the model to a two-country version where each country has the same characteristics as those described in the previous section. The shocks \(z \) and \(q \) are country specific and they follow a joint first order autoregressive process. Let \(A_t \equiv \{z_t, q_t\} \) and \(\tilde{A}_t \equiv \{\tilde{z}_t, \tilde{q}_t\} \) be the vectors of shocks in the two countries. The tilde denotes the foreign country. The transition density function is denoted by \(\Gamma(A_t, \tilde{A}_t, A_{t+1}, \tilde{A}_{t+1}) \).

To capture differences in the degree of capital markets integration, we assume that positive holdings of foreign assets is costly. Denote by \(N_t \) the aggregate net foreign asset position of the domestic country. The cost per unit of foreign holdings is \(\phi(N_t) = \phi N_t \). The assumption that the cost depends on the aggregate position of a country instead of individual positions avoid some technical complications. The parameter \(\phi \) captures the degree of international capital market integration. When \(\phi = 0 \) we have perfect integration. Because in equilibrium it is irrelevant whether the cost is incurred by the domestic and/or foreign country, we assume that the cost is incurred only by the domestic country.

Denote by \(n_t \) the foreign position of an individual worker and \(b_t \) the domestic holding. The worker’s budget constraint can be written as:

\[
w_t h_t + b_t + n_t (1 - \phi(N_t)) = c_t + \frac{b_{t+1}}{1 + r_t} + \frac{n_{t+1}}{1 + \tilde{r}_t}\]

Compared to the closed economy, workers have an additional choice variable, that is, the foreign lending \(n_t \) (or borrowing if negative). The first order
conditions are:

\[h_t = \left(\frac{w_t}{\alpha} \right)^{\frac{1}{\gamma - 1}} \] \hspace{1cm} (6)

\[1 = \delta(1 + r_t) E_t \left(\frac{U_c(c_{t+1}, h_{t+1})}{U_c(c_t, h_t)} \right) \] \hspace{1cm} (7)

\[1 = \delta(1 + \tilde{r}_t) \left(1 - \varphi(N_{t+1}) \right) E_t \left(\frac{U_c(c_{t+1}, h_{t+1})}{U_c(c_t, h_t)} \right) \] \hspace{1cm} (8)

Combining (7) and (8) we get:

\[1 + r_t = (1 + \tilde{r}_t)(1 - \varphi(N_t)). \]

Therefore, the interest rate is always lower in the country with a positive foreign asset position.

We can now define the equilibrium for this two-country economy. The aggregate states, denoted by \(s \), are given by the vectors of shocks \(A \) and \(\tilde{A} \), the bond issued by firms in both countries, \(B \) and \(\tilde{B} \), and the foreign position of the domestic country \(N \) (or alternatively of the foreign country \(\tilde{N} \)).

Definition 4.1 (Recursive equilibrium) A recursive competitive equilibrium is defined by the following set of functions for the domestic and foreign countries: (i) households’ policies \(h(s), c(s), b(s), n(s), \tilde{h}(s), \tilde{c}(s), \tilde{b}(s), \tilde{n}(s) \); (ii) firms’ policies \(l(s; b), d(s; b), b(s; b), \tilde{l}(s; b), \tilde{d}(s; b), \tilde{b}(s; b) \); (iii) firms’ value \(V(s; b), \tilde{V}(s; b) \); (iv) aggregate prices \(w(s), r(s), \tilde{w}(s), \tilde{r}(s) \); (v) aggregates of domestic and foreign holdings of workers, \(N, B^w, \tilde{N}, \tilde{B}^w \), and firms, \(B^f, \tilde{B}^f \); (vi) law of motion for the aggregate states \(s' = H(s) \). Such that: (i) household’s policies satisfy the optimality conditions (6)-(8); (ii) firms’ policies are optimal and satisfy the Bellman’s equation (1); (iii) the wages clear the labor market of each country and the interest rates clear the bond markets; (iv) the law of motion \(H(s) \) is consistent with individual decisions and the stochastic process for \(A \) and \(\tilde{A} \).

The only difference with respect to the equilibrium in the closed economy is that now there is a market for foreign bonds. The clearing condition is \(N + \tilde{N} = 0 \). This is in addition to the clearing conditions for the domestic markets, that is, \(B^h = B^f \) and \(\tilde{B}^h = \tilde{B}^f \).
4.1 Quantitative analysis

In this section we show the properties of the model numerically. The model is parameterized on a quarterly basis and the discount factors are set to generate an average real yearly return on bonds of 3% and on stocks of 7%. In the model the discount factor of workers determines the average return on bonds. Therefore, we set it to the quarterly value of $\delta = 0.9925$. The real return for stocks is determined by the discount factor of entrepreneurs, which we set to the quarterly value of $\beta = 0.9825$.

The utility function is specified as $U(c, h) = \ln(c - \alpha h^\gamma / \gamma)$. The parameter γ is set to 2, implying an elasticity of labor of 1. This is customary in business cycle studies. The parameter α is chosen so that in the steady state working hours are $1/3$.

For the parametrization of the revenue function we start with a return to scale parameter in the production technology of $\nu = 1.5$. Next we choose the demand elasticity parameter η which affects the price markup. In the model, the markup over the average cost is equal to $1/\nu \eta - 1$. The values commonly used in macro studies range between 10 to 20 percent. We use the intermediate value of 15 percent, that is, $\nu \eta = 0.85$. Given $\nu = 1.5$, this requires $\eta = 0.567$.

The technology shocks are independent of the probability of survival. They follow the first order Markov processes:

$$
\begin{align*}
 z_{t+1} &= (1 - \rho_z)\bar{z} + \rho_z z_t + \chi_z \upsilon_{t+1} + (1 - \chi_z)\bar{\upsilon}_{t+1} \\
 \bar{z}_{t+1} &= (1 - \rho_z)\bar{z} + \rho_z \bar{z}_t + \chi_z \bar{\upsilon}_{t+1} + (1 - \chi_z)\bar{\upsilon}_{t+1} \\
 q_{t+1} &= (1 - \rho_q)\bar{q} + \rho_q q_t + \chi_q \epsilon_{t+1} + (1 - \chi_q)\bar{\epsilon}_{t+1} \\
 \bar{q}_{t+1} &= (1 - \rho_q)\bar{q} + \rho_q \bar{q}_t + \chi_q \bar{\epsilon}_{t+1} + (1 - \chi_q)\bar{\epsilon}_{t+1}
\end{align*}
$$

where $\upsilon, \epsilon, \bar{\upsilon}, \bar{\epsilon}$ are white noise disturbances and the parameters $\rho_z, \rho_q, \chi_z, \chi_q$ determine the serial and cross-country correlations.

We begin by assigning $\rho_z = \rho_q = 0.9$ and $\chi_z = \chi_q = 1$. Therefore, shocks are highly correlated across time but they are independent across countries. The average productivity \bar{z} is normalized to 1 and the average retention probability is set to $\bar{q} = 0.975$. This implies an annual exit rate of about 10 percent, which is the approximate value for the whole US economy as
reported by the OECD (2001). The standard deviation of the white noise components are set to $\sigma_z = \sigma_q = 0.00655$.

The last parameter to be pinned down is the enforcement parameter κ. This is chosen to have an annual debt-to-output ratio of 0.8. The whole set of parameter values are reported in Table 2.

Table 2: Calibration.

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor for workers</td>
<td>$\delta = 0.9925$</td>
</tr>
<tr>
<td>Discount factor for investors</td>
<td>$\beta = 0.9825$</td>
</tr>
<tr>
<td>Utility parameter</td>
<td>$\alpha = 2.25, \gamma = 2$</td>
</tr>
<tr>
<td>Production technology</td>
<td>$\nu = 1.5$</td>
</tr>
<tr>
<td>Elasticity parameter</td>
<td>$\eta = 0.567$</td>
</tr>
<tr>
<td>Enforcement parameter</td>
<td>$\kappa = 1.5$</td>
</tr>
<tr>
<td>Productivity</td>
<td>$\bar{z} = 1, \rho_z = 0.9, \sigma_z = 0.0065, \chi_z = 1$</td>
</tr>
<tr>
<td>Market survival</td>
<td>$\bar{q} = 0.975, \rho_q = 0.9, \sigma_q = 0.0065, \chi_q = 1$</td>
</tr>
</tbody>
</table>

Simulation results The model is solved after log-linearizing the dynamic system around the steady state. The full list of dynamic equations is reported in Appendix C.

Figure 2 plots the impulse responses of credit, measured TFP and output to a one percent positive shock to z (left panel) and to q (right panel) when the economies are closed. Both shocks generate a credit and macroeconomic expansion. Measured TFP also increases because, with increasing returns to scale, productivity increases with employment. The responses to a negative shock are symmetric to the responses to a positive shock.

We now compare how the economies respond to shocks when they are fully integrated. Figure 3 plots the responses of output to a technology shock in country 1. The graphs reports the responses of output in both countries. When the economies are closed, only the output of country 1 is affected (see left panel). However, with mobility of capital, the output of both countries react to the technology shock in country 1 (see right panel). The response in country 2 derives from the increase in the interest rate induced by the technology shock in country 1. This follows from the increase in the demand
of credit in country 1. However, the response of output in country 2 is relatively small.

Figure 4 plots the impulse responses to an asset price boom (higher q) in country 1. Under the autarky regime, only the output of country 1 is affected by the shock. With mobility, instead, the outputs of both countries react to the asset price boom of country 1. It is interesting to observe that, even if the shock is in country 1, the output of country 2 increases by the same magnitude as the output of country 1. Also notice that the output of country 1 increases much less than in the case of autarky. Therefore, mobility has two effects. On the one hand, it mitigates the transmission of a domestic shock. On the other, the country becomes more vulnerable to external shocks. However, as long as shocks are not perfectly correlated across countries, the impact of liberalization is to reduce the macroeconomic volatility of each country.

To further illustrate this point, Table 3 reports typical business cycle statistics when the main driving force of the business cycle are either asset price shocks or technology shocks. Consistent with the impulse responses, liberalization reduces macroeconomic volatility with both, asset price and
technology shocks. However, the stabilization effect is much bigger when asset price shocks are the main driving force of the business cycle. With productivity shocks the stabilization effect is almost negligible.

To show the importance of the assumption that shocks are independent across countries, the bottom panel of Table 3 reports the same statistics when shocks are partially correlated. The correlation is 0.5. As can be seen the reduction in volatility induced by capital markets liberalization is smaller. However, for the case of asset price shocks, the reduction is still sizable.

The last point worth noticing is that capital markets liberalization increases the cross-country co-movement in output even if shocks are uncorrelated. This is especially true with asset price shocks.

5 Conclusion

We have studied an economy where one of the main driving forces of the business cycle are shocks to the value of firms (asset prices). Asset price movements affect the real sector of the economy through the credit channel:
booms enhance the borrowing capacity of firms and in the general equilibrium they lead to higher employment and production. The opposite arises after an asset price fall. Within this framework we have shown that capital market liberalization leads to lower macroeconomic volatility. This is consistent with the empirical evidence shown in the paper. Capital market liberalization also leads to greater co-movement in macroeconomic variables across countries consistent with the findings of Imbs (2006).

We have also studied the case in which the main driving force of the business cycle are productivity shocks. In this case liberalization leads to only a small reduction in macroeconomic volatility and to a modest increase in cross-country co-movement.

Figure 4: Impulse responses of output to a 1% increase in the q of country 1 under the autarky regime (left panel) and under the regime with capital mobility (right panel).
Table 3: Business cycle statistics from model simulated data. Top panel: Shocks are independent across countries. Bottom panel: Shocks are partially correlated across countries (corr=0.5).

<table>
<thead>
<tr>
<th></th>
<th>Asset price shocks</th>
<th>Productivity shocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autarky Mobility Ratio</td>
<td>Autarky Mobility Ratio</td>
</tr>
<tr>
<td>(a) Independent shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St.Dev. Productivity</td>
<td>0.54 0.38 0.70</td>
<td>0.87 0.84 0.96</td>
</tr>
<tr>
<td>St.Dev. Output</td>
<td>1.05 0.74 0.70</td>
<td>1.28 1.23 0.96</td>
</tr>
<tr>
<td>Corr. Productivity</td>
<td>0.00 1.00</td>
<td>0.00 0.09</td>
</tr>
<tr>
<td>Corr. Output</td>
<td>0.00 1.00</td>
<td>0.00 0.11</td>
</tr>
<tr>
<td>(b) Correlated shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St.Dev. Productivity</td>
<td>0.54 0.47 0.87</td>
<td>0.87 0.85 0.98</td>
</tr>
<tr>
<td>St.Dev. Output</td>
<td>1.05 0.92 0.88</td>
<td>1.28 1.25 0.98</td>
</tr>
<tr>
<td>Corr. Productivity</td>
<td>0.00 1.00</td>
<td>0.00 0.55</td>
</tr>
<tr>
<td>Corr. Output</td>
<td>0.00 1.00</td>
<td>0.00 0.56</td>
</tr>
</tbody>
</table>

Appendix

A Debt renegotiation

Suppose that, in case of renegotiation, the lender can confiscate the firm at a cost τ and sell it to other entrepreneurs, either active or inactive. The market value of the firm is $\beta E q_{t+1} V_{t+1}(b_{t+1})$. The net surplus from reaching an agreement is the confiscation cost τ. This is because τ is paid only if the parties do not reach an agreement. More specifically, if the firm is liquidated, the value that the lender gets is $\beta q_tE V_{t+1}(b_{t+1}) - \tau$ but the entrepreneur loses $\beta q_tE V_{t+1}(b_{t+1})$. Therefore, the net surplus is τ.

Bargaining is over the net surplus τ. Denoting by ξ the bargaining power of the entrepreneur, the value that the entrepreneur receives in the renegotiation stage is $\xi \tau$. This is in addition to the diverted revenue. Therefore, the total value from defaulting is $F(z_t, l_t) + \xi \tau$. Defining $\kappa = \xi \tau$, we get the
expression written in the main body of the paper.

B First order conditions

Consider the optimization problem (1) and let λ and μ be the Lagrange multipliers associate with the two constraints. Taking derivatives we get:

$$
\begin{align*}
\frac{d}{l} & : 1 - \lambda = 0 \\
\frac{l}{l} & : \lambda[F_t(l) - w] - \mu F_t(l) = 0 \\
\frac{b'}{b'} & : (1 + \mu) qEV_{b'}(s'; b') + \frac{\lambda}{R} = 0
\end{align*}
$$

The envelope condition is:

$$V_b(s; b) = -\lambda$$

Using the first condition to eliminate λ and substituting the envelope condition we get (2) and (3).

C Dynamic system

The equilibrium is characterized by the following system of equations:

$$
\begin{align*}
U_c(c_t, h_t)w_t + U_h(c_t, h_t) &= 0 \\
U_c(c_t, h_t) - \delta(1 + r_t)EU_c(c_{t+1}, h_{t+1}) &= 0 \\
w_t h_t + b_t + n_t \left[1 - \phi(n_t)\right] - c_t - b_{t+1} \frac{1 + r_t}{1 + \bar{r}_t} = 0 \\
F_h(z_t, h_t) - \frac{w_t}{1 - \mu_t} &= 0 \\
(1 + \mu_t)\beta(1 + r_t) - 1 &= 0 \\
b_t + d_t - \frac{b_{t+1}}{R_t} - F(z_t, h_t) + w_t h_t &= 0 \\
\beta q_t EV_{t+1} - F(z_t, h_t) - \kappa &= 0 \\
d_t + \beta q_t EV_{t+1} - V_t &= 0 \\
1 + r_t - (1 + \bar{r}_t)\left[1 - \phi(n_{t+1})\right] &= 0 \\
U_c(\tilde{c}_t, \tilde{h}_t)\tilde{w}_t + U_h(\tilde{c}_t, \tilde{h}_t) &= 0
\end{align*}
$$
These are 18 dynamic equations. After linearizing the system, we can solve for the variables $b_{t+1}, n_{t+1}, \mu_t, w_t, h_t, c_t, d_t, V_t, r_t, \tilde{b}_{t+1}, \tilde{n}_{t+1}, \tilde{\mu}_t, \tilde{w}_t, \tilde{h}_t, \tilde{c}_t, \tilde{d}_t, \tilde{V}_t, \tilde{r}_t$ as linear functions of the states, $A_t, b_t, n_t, \tilde{A}_t, \tilde{b}_t, \tilde{n}_t$.
References

