INTRINSIC COMPLETE TRANSVERSALS AND THE RECOGNITION OF EQUIVARIANT BIFURCATIONS

S. B. S. D. Castro
Faculdade de Economia and Centro de Matemática da Universidade do Porto,
Rua Dr. Roberto Frias,
4200-464 Porto, Portugal
E-mail: sdcastro@fep.up.pt

A. A. Du Plessis
Institute for Mathematical Sciences,
University of Aarhus,
Ny Munkegade,
8000 Aarhus C, Denmark
E-mail: matadp@imf.au.dk

We show how intrinsic complete transversals simplify both classification and recognition of equivariant bifurcations.

1. Intrinsic complete transversals

Intrinsic complete transversals provide a systematic way both to classify map-germs with respect to natural equivalences and to solve the recognition problem with respect to such a classification. We illustrate with an example from equivariant bifurcation theory.

Our methods are based on the following:

Theorem 1.1. Let A be an affine space, U a unipotent algebraic group acting almost affinely on A, LU its Lie algebra, $T \subset V_A$ a subspace, and $x_0 \in A$ a point such that

1. $T + LU.x_0 = V_A$;
2. $l.(x_0 + t) - l.x_0 \in T$ for all $t \in T$ and all $l \in LU$.

*Work partially supported by Fundação para a Ciência e a Tecnologia, Portugal.
Then $x_0 + T$ meets every U-orbit in A transversally. Furthermore, there is a subgroup U_T of U preserving $x_0 + T$ such that the intersection of any U-orbit with $x_0 + T$ is a U_T-orbit.

The affine space $x_0 + T$ appearing above is called an intrinsic complete transversal. The proof of this result will appear elsewhere.

The groups to which it will be applied are finite-dimensional quotients of subgroups of the group of contact equivalences. Such a group is unipotent if and only if the 1-jets of its elements are the direct sum of two unipotent linear isomorphisms.

These groups act on quotients of affine subspaces of jet-spaces; these actions are always "almost affine", so the definition of this concept may safely be omitted here.

2. Weight filtrations

Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ be a sequence of positive integers. A monomial $x_1^{k_1} \cdots x_n^{k_n}$ has weight $\alpha_1 k_1 + \cdots + \alpha_n k_n$ with respect to α.

The ideal in the ring E_n of smooth function-germs $(R^n, 0) \to R$ generated by the monomials of weight at least r with respect to α is denoted $F^r_{\alpha}E_n$; these ideals define a filtration of the ring E_n.

Now let $\beta = (\beta_1, \ldots, \beta_p)$ be another sequence of positive integers. The submodule of the E_n-module $E(n, p)$ of smooth map-germs $f : (R^n, 0) \to R^p$ generated by map-germs $f = (f_1, \ldots, f_p)$ with $f_i \in F^r_{\alpha+i}E_n$ for $1 \leq i \leq p$, is denoted $F^r_{\alpha, \beta}E(n, p)$; these submodules define a filtration of $E(n, p)$.

The group R of germs of diffeomorphisms of $(R^n, 0)$ is filtered by the subgroups $F^r_{\alpha}R = (1 + F^r_{\alpha, \alpha}E(n, n)) \cap R$; in a similar way the subgroup C of the group of diffeomorphism-germs of $(R^{n+p}, 0)$ is filtered by the subgroups $F^r_{\alpha, \beta}C = (1 + F^r_{\alpha+i, \alpha+i}E(n + p, n + p)) \cap C$.

The group $K = R \cdot C$ of contact equivalences is filtered by the subgroups $F^r_{\alpha, \beta}K = F^r_{\gamma}R \cdot F^r_{\alpha, \beta}C$; intersecting with a subgroup, e.g. the group B of bifurcation equivalences, filters the subgroup also.

We note that the 1-jet of an element of F^1K is the sum of two unipotent linear transformations: for if the coordinates in R^n, R^p are re-ordered so that the corresponding weights are non-decreasing, then the matrices of these linear transformations with respect to the re-ordered coordinates are lower unitriangular, that is, triangular with 1’s in the main diagonal.

To simplify the notation, subscripts α, β indicating systems of weights will be discarded, and spaces of map-germs will be denoted simply M.

The action of K on M is compatible with weight filtrations:
Lemma 2.1. Let $f \in F^0 M$, $m \in F^k M$, $l \in L(F^r K)$. Then $l.(f+m) - l.f \in F^{k+r} M$.

For proof see 2, lemma 2.24(iii); for filtrations see 2, section 2.3.

A weighted determinacy result for B now follows from 5, theorem 1.3:

Theorem 2.1. If $f \in F^0 M$ is a germ of bifurcation $\mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ and T is a subspace of $F^k M$ such that

$$F^k M \subset L(F^1 B).f$$

then f is $F^k M$-equivalent to $f + T + F^{k+1} M$.

An application of theorem 1.1 yields a complete transversal:

Theorem 2.2. If $f \in F^0 M$ is a germ of bifurcation $\mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ and T is a subspace of $F^k M$ such that

$$F^k M \subset T + L(F^1 B).f + F^{k+1} M$$

then any $g \in F^0 M$ with $g - f \in F^k M$ is $F^1 B$-equivalent to $f + t + \phi$ for some $t \in T$ and $\phi \in F^{k+1} M$.

Proof. It follows from lemma 2.1 that $F^0 B$ acts on $M/F^k M$. Let G be the subgroup fixing $f + F^k M$, and let $U = G \cap F^1 B/F^{k+1} B$; then U is a unipotent algebraic group acting affinely on $f + F^k M/F^{k+1} M$. According to theorem 1.1 and lemma 2.1, $f + T + F^{k+1} M/F^{k+1} M$ is an intrinsic complete transversal to the action, and the result follows.

This result may also be obtained using the less general results on complete transversals in 2 (see theorem 2.25 there).

In the presence of a symmetry group Γ acting on \mathbb{R}^n we define a filtration $F^r M_\Gamma$ of the space M_Γ of equivariant bifurcation-germs $\mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ by $F^r M_\Gamma = F^r M \cap M_\Gamma$, and a filtration $F^r B_\Gamma$ of the group B_Γ of equivariant equivalences by $F^r B_\Gamma = F^r B \cap B_\Gamma$. For more information about M_Γ and B_Γ see 7, ch. XIV, §1.

The arguments already given adapt easily (adding subscript Γ as appropriate) to yield Γ-equivariant versions of theorem 2.1 (applying 5, theorem 1.15) and theorem 2.2.
3. D_4-symmetric bifurcations

Let D_4 act on \mathbb{R}^2 as symmetries of the square, so that the action is generated by $(x, y) \mapsto (x, -y)$ and $(x, y) \mapsto (-y, x)$.

The invariant theory for this action of is described in Golubitsky et. al. 7 and Golubitsky and Roberts 6. We write

$$E_1(x, y) = (x, y), \quad E_2(x, y) = \delta(x, y)(x, -y),$$

where $\delta(x, y) = y^2 - x^2$; these generate the equivariant maps $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ as a module over the ring \mathcal{E}_{D_4} of invariant functions, itself generated by $N(x, y) = x^2 + y^2$ and $\Delta(x, y) = \delta(x, y)^2$.

A D_4-equivariant bifurcation is thus a map-germ

$$g(x, y, \lambda) = p(N, \Delta, \lambda)E_1(x, y) + r(N, \Delta, \lambda)E_2(x, y),$$

at $(0, 0)$ with $dg(0,0) = 0$.

The classification of D_4-equivariant bifurcations up to B_{D_4} has been carried out up to topological codimension two by Golubitsky and Roberts 6 (topological codimension is the difference between the orbit codimension and the number of moduli involved).

The simplest of these bifurcations have codimension one and one modulus; their orbits are represented by the normal forms

$$(\epsilon_0 \lambda + mN)E_1 + \epsilon_1 E_2, \quad \epsilon_0, \epsilon_1 = \pm 1, \quad m \neq 0, \epsilon_1, \quad (I)$$

where m is the modulus. The more degenerate bifurcations are listed in Golubitsky et. al. 7, pp.342-3; we single out the following bifurcations of codimension two with one modulus, represented by the normal forms

$$(\epsilon_0 \lambda^2 + mN + \epsilon_1 \lambda N)E_1 + \epsilon_2 E_2, \quad \epsilon_0, \epsilon_1, \epsilon_2 = \pm 1, \quad m \neq 0, \epsilon_2, \quad (V)$$

where m is the modulus.

We will illustrate how the use of intrinsic complete transversals simplifies both the classification process and the question of recognising which orbit a given bifurcation is contained in, by considering orbits of types I and V.

It is convenient to introduce weights $1, 1$ for x, y, λ in the source, and weights $3, 3$ in the target. We note that all equivariant monomial vectors are of even weight; so $F^{2r-1}M_{D_4} = F^{2r}M_{D_4}$ for $r \geq 1$. Thus, we have

$$F^0M_{D_4} = \mathbb{R}.\{\lambda E_1, NE_1, E_2\} + F^2M_{D_4},$$

$$F^2M_{D_4} = \mathbb{R}.\{\lambda^2 E_1, \lambda NE_1, \Delta E_1, N^2 E_1, \lambda E_2, NE_2\} + F^4M_{D_4},$$

$$F^4M_{D_4} = \mathbb{R}.\{\lambda^3 E_1, \lambda^2 NE_1, \lambda \Delta E_1, N^3 E_1, N \Delta E_1, \lambda^2 E_2, \lambda NE_2, N^2 E_2, \Delta E_2\} + F^6M_{D_4}.$$
We will write $\mathcal{U} = F^1 \mathcal{B}_{D_4}$; we note that \mathcal{U} is the subgroup of \mathcal{B}_{D_4} of equivalences whose 1-jets are the identities.

Consider now a bifurcation $h \in M_{D_4}$; the terms of weight zero in h form a bifurcation

$$h_0(x, y, \lambda) = (a \lambda + bN)E_1 + cE_2, \quad a, b, c \in \mathbb{R},$$

differing from h by terms of (relative) weight at least 2. To see whether h is \mathcal{U}-equivalent to h_0, we seek to apply theorem 2.1, and must thus calculate whether $F^2 M_{D_4} \subset L\mathcal{U}. h_0$.

The lowest-weight terms $(X, \Lambda, S) \in L\mathcal{U}$ are $\Lambda(\lambda) \in \mathbb{R}. \lambda^2$, $X(x, y, \lambda) \in \mathbb{R}. \{\lambda E_1, NE_1, E_2\}$, and $S(x, y, \lambda) \in \mathbb{R}. \{\lambda S_1, NS_1, \Delta S_1, S_2, S_3, S_4\}$, where S_i is one of the D_4-equivariant matrices computed by Golubitsky and Roberts (see also 7, chapter XVII).

It is easy to see that $F^2 M_{D_4}$ is generated by $\lambda^2 E_1$, ΔE_1, $\lambda N E_1$, $N^2 E_1$, λE_2, $N E_2$, ΔE_2 over \mathcal{E}_{D_4}. The elements of $L\mathcal{U}. h_0$ obtained from the Λ, X, S listed above may be written as \mathcal{E}_{D_4}-linear combinations of these generators; the rows of the following matrix A give the coefficients:

$$\begin{bmatrix}
 a & 0 & 0 & 0 & 0 & 0 & 0 \\
 a & 3b & 0 & 0 & 3c & 0 & 0 \\
 0 & a & 3b & 0 & 0 & 3c & 0 \\
 0 & 0 & 0 & c - 2b & a & b - 2c & 0 \\
 a & b & 0 & 0 & c & 0 & 0 \\
 0 & a & b & 0 & 0 & c & 0 \\
 0 & 0 & 0 & a \lambda + bN & 0 & 0 & c \\
 0 & a & b & -c & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & a & b - c & 0 \\
 \frac{1}{4}aN & \frac{1}{4}bN & -\frac{1}{4}(a \lambda + bN) & 0 & -\frac{1}{4}N & \frac{1}{4} & 0
\end{bmatrix}$$

Thus h_0 is $F^2 M_{D_4}$-determined if and only if $L\mathcal{U}. h_0 = F^2 M_{D_4}$, if and only if A has rank 7; so if and only if $a, b, c \neq 0$ and $c \neq -b$. Equivariant scaling shows that for such $a, b, c h_0$, and so h also, lie in an orbit of type I, solving the recognition problem for this orbit, Golubitsky and Roberts.

Now we consider the case $a = 0$. The first column of A is now zero, and the second and fifth columns are linearly dependent. Thus we have

$$F^2 M_{D_4} = T + L\mathcal{U}. h_0$$

where $T = \mathbb{R}. \{\lambda^2 E_1, \lambda N E_1, \lambda E_2\}$; of course only a two-dimensional space is required here, but it is not obvious which is to be preferred at this point.
Applying theorem 1.1, T projects to an intrinsic complete transversal in $h_0 + F^2 M_{D_4}/P$, where P is any intrinsic submodule of $F^2 M_{D_4}$ of finite codimension; we suppose $P \subset F^0 M_{D_4}$.

We note $dh_0 \lambda E_1, (\lambda S_1)h_0 \in T$, identifying $\lambda E_1, \lambda S_1$ as elements of LU_T. These two elements correspond to the change of coordinates

$$ x = X + a_2 t\lambda X, y = Y + a_2 t\lambda Y, $$

and the matrix transformation $S = I + a_1 t\lambda I$. Applying these to the germ $g(x, y, \lambda) = h_0(x, y, \lambda) + \alpha \lambda^2 E_1 + \beta \lambda NE_1 + \gamma \lambda E_2$ produces (modulo higher-order terms, which we can assume to be contained in P)

$$ bNE_1 + cE_2 + \alpha \lambda^2 E_1 + ((3a_2 + a_1)bt + \beta)\lambda NE_1 + ((3a_2 + a_1)ct + \gamma)\lambda E_2 $$

which is equivalent to h_0 modulo P if and only if $\alpha = 0$ and $\gamma b - c\beta = 0$; these yield the non-degeneracy conditions $p_{\lambda\lambda} \neq 0$ and $r_{\lambda P N} - r_{P N} \neq 0$ of 6, see 7, pp.342-3.

In fact, we can suppose $\gamma = 0$. For let $f = h_0 + \alpha \lambda^2 E_1 + \beta \lambda NE_1$ and $T_1 = \mathbb{R}\{\lambda^2 E_1, \lambda NE_1\}$. Then $LU_T.f + T_1 = T$, so by theorem 1.1, f is equivalent to g; here we take $P = \mathcal{P}(f)$, the higher-order terms for f (according to 5, theorem 1.17, this is the intrinsic part of $LU.f$).

Equivariant rescaling shows that f lies in an orbit of type V. (A similar argument shows that we could reduce to the case $\beta = 0$ instead of $\gamma = 0$, giving different, but equivalent, normal forms.) Summing up, we see that any bifurcation with $p_{\lambda} = 0$ (i.e. $a = 0$) but satisfying the other non-degeneracy conditions obtained above, lies in an orbit of type V. We have thus solved the recognition problem for these orbits. The conclusion is of course that of 6, but the arguments given here are both much shorter and more systematic.

References

4. J. Damon, “The unfolding and determinacy theorems for subgroups of \mathcal{A} and \mathcal{K}”, *Proceedings of Symposia in Pure Mathematics* 40, 233 (1983).