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Abstract
Real time series sometimes exhibit various types of “irregularities”: missing observa-
tions, observations collected not regularly over time for practical reasons, observation
times driven by the series itself, or outlying observations. However, the vast majority
of methods of time series analysis are designed for regular time series only. A particu-
lar case of irregularly spaced time series is that in which the sampling procedure over
time depends also on the observed values. In such situations, there is stochastic depen-
dence between the process being modelled and the times of the observations. In this
work, we propose a model in which the sampling design depends on all past history
of the observed processes. Taking into account the natural temporal order underly-
ing available data represented by a time series, then a modelling approach based on
evolutionary processes seems a natural choice. We consider maximum likelihood esti-
mation of the model parameters. Numerical studies with simulated and real data sets
are performed to illustrate the benefits of this model-based approach.

Keywords Evolutionary processes · Informative time points · Continuous-time
autoregressive process

Mathematics Subject Classification 62M10

1 Introduction

Analysis of experimental data that have been observed at different points in time leads
to specific problems in statistical modelling and inference. In traditional time series,
the main emphasis is on the case when a continuous variable is measured at discrete
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equispaced timepoints, and there is an extensive body of literature on analysing equally
spaced time series data, see for example Box et al. (2015) and Brockwell and Davis
(2002). Nevertheless, unevenly spaced (also called unequally or irregularly spaced)
time series data naturally occur in many scientific domains. For example, data related
to natural disasters such as earthquakes, floods, or volcanic eruptions which typically
occur at irregular time intervals, give rise to irregularly or unevenly spaced time series.
A particular situation of irregularly spaced data is that in which the sampling design
depends also, for practical constraints, on the observed values. Examples occur in
fisheries where the data are observed when the resource is available, in sensoring
when sensors keep only some records in order to save memory and in clinical studies,
when a worse clinical condition leads to more frequent observations of the patient. In
all such situations, there is stochastic dependence between the process under study and
the times atwhich the observations aremade, and the observation times are informative
on the underlying process. Ignoring this dependence can lead to biased estimates and
misleading inferences.

In this context,Monteiro et al. (2018) introduce the concept of Preferential Sampling
in the temporal dimension and propose a model-based approach to make inference
and prediction. The suggested framework considers the observed time points as the
realization of a time point process stochastically dependent on an underlying latent
process (e.g. an individual health indicator, when subjected to regular monitoring).

Monteiro et al. (2018) assumed that the variable of interest is sampled in time
according to a sampling design that depends on the values of the underlying process,
ignoring the past of the observation processes. However, this kind of assumption
of a memoryless process for the observations process having an evolution without
aftereffects is sometimes unrealistic and useless in real contexts, where the dependence
on the past is crucial.

In this work, we consider that the sampling design may depend on entire past
history of the process, meaning all the times of the observations as well as the values
of these observations. In these situations, the observed time points can be considered
informative to the process being studied. Within the scope of longitudinal studies, the
importance of joint modelling informative times and data was already recognised by
Ryu et al. (2007) and Liang et al. (2009), who proposed joint modelling and analysis of
longitudinal data with possibly informative observation times via latent variables. In
these studies, the follow-up time process is considered dependent on the longitudinal
outcome process and it should not be regarded deterministic in the design of the study.
The analogous problem in the context of longitudinal clinical trial data has been studied
too in the context of issues concerning missing values and dropouts, in the sense that a
missing observation conveys partial information about the value that would have been
observed. See, for example, Diggle and Kenward (1994), Hogan and Laird (1997) and
Daniels and Hogan (2008).

Our framework considers joint models for data indexed by informative observa-
tion times, assuming a continuous time underlying process observed at irregular and
stochastic points. To represent the underlying process, we opt for a continuous time
series model such as the continuous time autoregressive (CAR) model, which is math-
ematically and computationally tractable and yet sufficiently flexible to represent a
wide range of phenomena. The assumption that the observation times are informative
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and stochastic is equivalent to assuming that they are a realisation of a random pro-
cess, which is stochastically dependent on the underlying process. This dependence is
specified via a model-based approach that relies on point processes, namely marked
evolutionary processes.

Point processes provide a very useful theoretical tool to represent the evolution of
some random value, or system, over time. In such processes, it is assumed that what
happens now may depend on the past, but not on the future. This identifies a natural
ordering for temporal point processes. Our interest is to consider a point process that
specifies a stochastic model for the time of the next event given we know all the times
of previous events. Such processes are termed evolutionary point processes.

The paper is organized as follows. In Sect. 2, we provide some theoretical back-
ground on evolutionary point processes. In Sect. 3, we consider that the sampling
design may depend on all past history of the process and we propose a model, based
on evolutionary processes that take into account that the times and values of the obser-
vations contain important information for the underlying process (informative and
stochastic time points). We proceed with likelihood inference to estimate the parame-
ters of this model and we consider a numerical method based on a Laplace approach to
optimize the likelihood. In Sect. 4, using numerical studies, we document the perfor-
mance of this approach comparing the results of main parameter estimates with those
obtained from the traditional approach for irregularly spaced data. In Sect. 5, we show
the application of the previously described methodology to a real data set related to
monitoring the level of a biomedical marker, after a cancer patient undergoes a bone
marrow transplant. Section 6 is devoted to make some concluding remarks.

2 Background on evolutionary processes

We start by reviewing some concepts on evolutionary point processes (Daley andVere-
Jones 2003). To set the notation, let (Tn)n∈N denote an increasing sequence of positive
random times. An important concept in evolutionary processes is the history of the
process, denoted by Ht which represents the entire history of the point process (Tn)
prior to time t , meaning that Ht specifies the times of all point events in the interval
(−∞, t). We refer to ˜Ht as the observed history of the process over the interval [0, t),
that is the history consistent with an observation on the process.

In this work, the point process is assumed to be simple point processes,meaning that
no points coincide and therefore the points can be ordered strictly in time. Furthermore,
the specification of the point process conditional on its history is via the conditional
intensity function.

The conditional intensity can be written directly in terms of the hazard functions
since hazard function has a natural interpretation as the conditional instantaneous event
rate. Following Daley and Vere-Jones (2003), given a sequence ti with 0 < t1 < · · · <

tn < · · · the hazard functions are defined by

λ∗(t) =
{

h1(t), 0 < t ≤ t1
hn(t |t1, . . . , tn−1), tn−1 < t ≤ tn, n ≥ 2
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The intuitive content of the notion of a conditional intensity function is well-
expressed through the suggestive relation

λ∗(t)dt = E
[

N (dt)| ˜Ht
]

where dt is an infinitesimal interval around t , N (·) denotes the number of points
falling in an interval and ˜Ht is the σ -algebra of events occurring at times up to but not
including t . Thus, the conditional intensity can be interpreted as the conditional risk
of the occurrence of an event at t , given the realization of the process over the interval
[0, t).

2.1 Conditional intensity function

The conditional intensity function of the point process (Tn), λ∗(t) = λ(t | ˜Ht ), is
defined by

λ∗(t) = fT (t | ˜Ht )

1 − FT (t | ˜Ht )
, t1 < · · · < tn−1 < t < tn < · · · (1)

where fT (t | ˜Ht ) is the conditional density and FT (t | ˜Ht ) is the corresponding cumu-
lative distribution function.

Intuitively, the conditional intensity at t gives the conditional “risk” of a point event
occurring at that instant in time, given the observed history of the process prior to time
t .

Examples of point processes in which the conditional intensity has a particular
functional form are the following:

– The (inhomogeneous) Poisson process. In this process the number of points in
disjoint sets is independent and the conditional intensity function inherits this
property. The Poisson process is quite simply the point process in which the con-
ditional intensity function is independent of the past, i.e. the conditional intensity
function is equal to the intensity function of the Poisson process, λ∗(t) = λ(t).

– The conditional intensity function of a Hawkes process, Hawkes (1971), with an
exponential decay function has the form

λ∗(t) = η + ψ
∑

i :ti∈(0,t)

exp(−γ (t − ti ))

where η > 0, ψ ≥ 0, γ > 0 and ψ < γ for the process to be stationary. Note that
each time a new point arrives in this process, the conditional intensity grows by ψ

and then decreases exponentially back towards η. In other words, a point increases
the chance of getting other points immediately after (self-exciting). Settingψ = 0,
return us to the homogeneous Poisson process.
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2.2 Marked point processes

In addition to the times of the point events, there may be additional variables that
are of interest associated with each point event. This information is known as marks
and the mark space (M) can be of many different types, but it is often (a subset of)
R or N. The marks may have an independent interest or may be included to make a
more realistic model of the event times. For example, in the analysis of a particular
medical indicator, it is relevant to know its value and not only when it was observed.
In addition, the value of the indicator influences how often measurements are taken.

More formally, a marked point process, with point event times in R and marks in
M , is a point process {(Tn,Yn)n∈N} on R × M with the additional property that the
process associated with times t1, t2, . . ., the ground process, is itself a point process
onR. We specify a marked point process by defining the conditional intensity λ(·| ˜Ht )

of the ground process, and then, for a given point event and observed history at time
t , we define the conditional distribution function for the marks. The later may be
represented as f ∗

Y (y|t) = fY (y|t, ˜Ht,y), specifying the density of the mark Y given
t and the history of the process that now includes information of times and marks of
past events. This means that the definitions of the complete and observed histories,
Ht,y , and ˜Ht,y , and the conditional intensity function was extended for marked point
processes. We can now define the conditional intensity function for the marked case
as

λ∗(t, y) = λ∗(t) f ∗
Y (y|t) (2)

λ∗(t) is called the ground intensity and is defined exactly as the conditional intensity
function for the unmarked case, except that it is allowed to depend on the marks of the
past events. In addition, the marks are assumed to be conditionally independent given
the history of the marked point process and unanticipated. A process is said to have
unanticipated marks if the distribution of the mark at ti is independent of all previous
point event times and marks.

Thus, we can rewrite (2) as

λ∗(t, y) = fT ,Y (t, y| ˜Ht,y)

1 − FT (t | ˜Ht )

where fT ,Y (t, y| ˜Ht,y) is the joint density of the time and the mark, conditional on past
times and marks, and FT (t | ˜Ht,y) is the conditional cumulative distribution function
of T also conditional on the past times and marks.

A marked point process (T,Y) = {(T1,Y1), (T2,Y2) · · · } is strongly stationary if
all the shifted marked point processes {(T1 − s,Y1), (T2 − s,Y2), . . .} have the same
distribution with s ∈ R.

An example of a marked point process is the marked Hawkes process. This process
is a generalization of the unmarked Hawkes process, such that each point event time
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now has a mark associated with it. The conditional intensity of the ground process is
given by

λ(t | ˜Ht ) = λ∗(t) = η + ψ
∑

ti :ti∈(0,t)

exp(β1yi ) exp(−γ (t − ti )) (3)

where η, γ > 0, ψ, β1 ≥ 0 and yi denotes the observed value at time ti .
Equivalently, we could define it by its conditional intensity function including both

marks and times

λ∗(t, y) =
⎛

⎝η + ψ
∑

ti :ti∈(0,t)

exp(β1yi ) exp(−γ (t − ti ))

⎞

⎠ f ∗(y|t) (4)

The idea behind using this model is that every new event increases the intensity by
ψ exp(β1yi ) and large events increase the intensity more than small.

2.3 Inference

Daley and Vere-Jones (2003) note that for point processes described as having an evo-
lutionary character, their conditional intensities and likelihoods are relatively simple.
The evolutionary character of such point processes allows the likelihood to be found
by successively conditioning on the past. Explicitly, the likelihood of a realization
((t1, y1), . . . , (tn, yn)) on [0, T ) × R, of a marked point process is given by

LE =
(

n
∏

i=1

λ∗(ti )
)

exp

(

−
∫ T

0
λ∗(u)du

)

(

n
∏

i=1

f ∗
Y (yi |ti )

)

(5)

See Daley and Vere-Jones (2003, p. 246–256) for a development of the likelihood.
The third factor on the right-hand side of (5) is the contribution to the likelihood from
the observed marks.

The use of the corresponding log-likelihood implies bearing in mind some practical
considerations. A point process is only observed for a finite interval [0, T ] and time 0 is
some time after the origin of the process. For evolutionary point processes, theremaybe
effects frompoint events occurring before time0.Daley andVere-Jones (2003) referred
such effects as edge or boundary effects. An approach often taken in the literature is
ignoring the effects from point events occurring before the start of the observation
period. In this case, the conditional intensity can be regarded as approximate for some
initial part of the observation period, and as such, there is likely to be some effect on
the estimated model. Rasmussen (2013) highlights that the estimate of η is likely to be
too high, however, he noted that the effects on the estimated model will be negligible
if the data set being used is large.
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3 An evolutionarymodel for informative time points

Consider an unobserved stochastic process in time S(t), represented by a CAR(1) that
satisfies the differential equation

dS(t) + α0S(t)dt = dW (t)

where α0 is the autoregressive coefficient andW (t) is a Wiener process with variance
parameter σ 2

w. S(·) is a stationary Gaussian process if α0 > 0, with E[S(t)] = 0.
Now admit that S(t) is observed at times ti , i = 1, . . . , n, yielding a data set (ti , yi ),
where the corresponding Yi = Y (ti ) is the noisy version of S(ti ), Y (ti ) = μ+ S(ti )+
N (0, τ 2). Since our goal is to infer on S(t), admitting that the sampling times are
stochastic and the sampling design may depend on all past history of the process (both
the actual times and values of the observations) then a model able to deal with this
evolutionary character must specify the joint distribution of S, T = (t1, . . . , tn) and
Y = (Y1, . . . ,Yn), [S, T ,Y ]. Considering that [S, T ,Y ] = [S][T ,Y |S] let {(T ,Y )|S}
be an evolutionary marked point process1 with ground intensity similar to (3)

λ∗
S (t) = λ(t | ˜Ht , S) = η + ψ

∑

ti :ti∈(0,t)

exp(β1yi ) exp(−γ (t − ti )) (6)

with η, γ > 0, ψ < γ and ψ, β1 ≥ 0.

Admitting the conditional mark density, f ∗
S (y|t) = f ∗(y|t, S), then according to

(2), the conditional intensity function including both marks and times is

λ∗
S(t, y) = λ(t, y| ˜Ht , S) = λ∗

S(t) f
∗
S (y|t) (7)

The main purposes behind this model are

– every new event increases the intensity by ψ exp(β1yi ) and large events increase
the intensity more than small events;

– observations that are more distant in time have less influence, considering on γ

parameter;
– the initial value of the conditional intensity equals η and we ignore effects from
events occurring before the first observation.

Thismodel, henceforth EVOL, allows to take into account the history of the process,
capture the evolutionary character of the process and deal with irregularly spaced time
series.

3.1 Maximum likelihood estimation

To obtain estimates for the parameters of the model we use maximum likelihood
estimation. For the shared latent process model, the likelihood function for data T and

1 This point process is stationary under the conditions given by Proposition 6.4. VII. from Daley and
Vere-Jones (2003)
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Y can be expressed as

L(θ) = [T ,Y ] =
∫

S
[T ,Y , S]dS =

∫

S
[S][T ,Y |S]dS (8)

where θ =
(

μ, σ =
√

σ 2
w

2α0
, φ = 1

α0
, τ, β1, γ, ψ, η

)

represents all the model parame-

ters.
Considering that the likelihood of a marked point process is given by (5), [T ,Y |S]

in (8) takes the form

[T ,Y |S] =
(

n
∏

i=1

λ∗
S(ti )

)

exp

(

−
∫ T

0
λ∗
S(u)du

)

(

n
∏

i=1

f ∗
S (yi |ti )

)

The associated log-likelihood function is given by

log([T ,Y |S]) =
n

∑

i=1

log λ∗
S(ti ) −

∫ T

0
λ∗
S(u)du +

n
∑

i=1

log f ∗
S (yi |ti ) (9)

Substituting in (9), the conditional (ground) intensity, λ∗
S(·), and the conditional

mark density f ∗
S (yi |ti ), specified as N (Si , τ 2), then the log-likelihood can be rewritten

as

log([T ,Y |S]) =
n

∑

i=1

log

⎛

⎝η + ψ
∑

j :t j<ti∈(0,t)

exp(β1y j − γ (ti − t j ))

⎞

⎠

−ηT − ψ

γ

n
∑

i=1

exp(β1yi )(1 − exp(−γ (T − ti )))

−n

2
log(2πτ 2) − 1

2τ 2

n
∑

i=1

(yi − Si )
2 (10)

3.2 Computational procedures

The calculation of the integral in (8) is perfomed in three steps. In a first step, we need
to calculate the log of the joint bivariate distribution of the observations conditional on
the underlying process S as given in expression (10). To overcome the computational
burden resulting from the nested sum in the first term

n
∑

i=1

log

⎛

⎝η + ψ
∑

j :t j<ti∈(0,t)

exp(β1y j − γ (ti − t j ))

⎞

⎠ ,
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we use a compiled C++ subroutine. Additionally, that we set λ(0| ˜H0) = η and ignore
the effects from point events occurring before time 0.

In a second step we need to approximate [S], the distribution of the unobserved
underlying process. For this purposewe use a technique based on stochastic partial dif-
ferential equations (SPDE). Following Lindgren et al. (2011), we represent a Gaussian
process with Matérn covariance structure as the solution of the following SPDE,

(

φ−2 − �
)α/2

(ωS(t)) = ε(t), t ∈ R
+, (11)

where ε(t) is Gaussian white noise, � is the Laplacian and φ is the range parameter
of the Matérn covariance function γ (u) in its standard parametrization,

γ (u) = σ 2

�(ν)2ν−1 (u/φ)ν Kν (u/φ) : u ≥ 0

where Kν is the modified Bessel function of second kind and order ν > 0 and σ 2 is the
marginal variance. The integer value of ν determines the mean square differentiability
of the underlying process, which matters for predictions made using such a model.
However, ν is usually fixed since it is poorly identified in typically applications. The
remaining parameters in (11) areα = ν+1/2, from thiswe can identify the exponential
covariance with ν = 1/2, and ω that controls the variance,

ω2 = �(1/2)

�(1)(4π)1/2φ−1σ 2 (12)

Finally, S is approximated by ˜S, where

˜S(t) =
m

∑

k=1

ψk(t)Wk, t ∈ R
+

with ψk(·) being piecewise linear basis functions at a set of time knots and W =
W1, ...,Wm is a zero-mean multivariate Gaussian variate with covariance matrix Q−1.
The construction is done by projecting the SPDE onto the basis representation in what
is essentially a Finite Element method. For α = 1 the required form of Q is

Q = ω2(φ−2C + G2)

where C and G2 are sparse matrices whose explicit expressions can be found in
Lindgren et al. (2011).

In the last step, to compute the integral in the likelihood (8), we utilize automatic
differentiation of a Laplace approximation to the marginal likelihood, following Kris-
tensen et al. (2016).

Note that the likelihood function for L(θ) can be written as

L(θ) =
∫

S
exp(− f (S, θ))dS (13)
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where f (S, θ) denote the negative joint log-likelihood of the data, θ is the vector of
parameters (fixed effects) and S the random effects. Thus the Laplace approximation
for L(θ) is

L∗(θ) = (2π)N/2 det(H(θ))−1/2 exp(− f (̂S(θ), θ))

where

̂S(θ) = argSmin f(S, θ) (14)

and H(θ) is the Hessian of f with respect to S evaluated at ̂S(θ),

H(θ) = ∂2

∂S2
f (S, θ)|S=̂S(θ)

The estimate of θ minimizes the negative of the logarithm of the Laplace approxi-
mation,

− log L∗(θ) = −N

2
log(2π) + 1

2
log det(H(θ)) + f (̂S(θ), θ) (15)

This objective function and its derivatives acquired by using automatic differenti-
ation, are required to apply standard nonlinear optimization algorithms (e.g. nlmimb)
to optimize the objective function and obtain the estimate for θ .

Uncertainty of the estimate ̂θ or of any differentiable function of the estimate ζ(̂θ)

that the user specifies, is obtained by the δ-method:

Var(ζ(̂θ)) = −
{

∂ζ(θ)

∂θ ′
[

∂2(log L∗(θ))

∂θ∂θ ′
]−1

∂ζ(θ)

∂θ

}

θ=̂θ

(16)

These uncertainty calculations also require derivatives of (15). However, derivatives
are straight-forward to obtain using automatic differentiation in this context.

In particular, using the R package TMB, short for Template Model Builder, (Kris-
tensen et al. 2016), the user has to define the joint log-likelihood of the data and (i.e.
conditional on) the random effects as a C++ template function. The other operations
such as integration and calculation of the marginal score function, are done directly in
R language. The package evaluates and maximizes the Laplace approximation of the
marginal likelihood, where the random effects are automatically integrated out. This
approximation, and its derivatives, are obtained using automatic differentiation (up to
order three) of the joint likelihood. In the case of sampling design that may depend
on entire past history of the process, we simply have to define the joint negative
log-likelihood as

f (S, θ) = −log([S][T ,Y |S])
and allow TMB package, (Kristensen et al. 2016), to integrate out the latent field S to
evaluate approximately (8).

123



Modelling informative time points: an evolutionary process approach

4 Numerical studies

We now intend to proceed with the assessment of the EVOL model, comparing the
results of its parameter estimates and those of the traditional Kalman filter approach
to irregularly spaced data (cts package (Wang 2013)). We use simulated time series,
so we start by describing the procedure needed to simulate a marked point process.

4.1 Simulation design

The classic method to simulate an inhomogeneous Poisson process is the thinning
method of Lewis and Shedler (1979). This method requires that the conditional inten-
sity to be bounded above, i.e. there is a finite M such that for all t , λ(t | ˜Ht , S) ≤ M .
This method was generalised by Ogata (1981) and this generalisation only requires
that the intensity to be locally bounded. The algorithm is described as follows. Sup-
pose we can find a piecewise constant process M(·| ˜Ht , S), conditional on the history
of the point process, such that for t ∈ [0, T ),

λ(t | ˜Ht , S) ≤ M(·| ˜Ht , S)

Given that we can find a suitable M(·| ˜Ht , S), we can simulate a realisation of the
point process of interest in this way: define an inhomogeneous Poisson process N∗
which has a piecewise constant intensity M(·| ˜Ht , S) that changes value according to
the history ˜Ht and decide on the termination condition, for example, the simulation
interval is [0, T ), then simulate the points 0 ≤ t∗1 < t∗2 < · · · < t∗N∗[0,T ) < T from the

process N∗. Each t∗i is then selected with probability λ(t∗i | ˜Ht∗i , St∗i )/M(t∗i | ˜Ht∗i , St∗i ) to
form part of the simulated realisation of the point process of interest, where the history
Ht∗i and St∗i give the simulated history of the point process of interest up to time t∗i .
For each point ti that is selected to the simulated realisation of the point process of
interest we simulate a mark yi from Y (t) = μ + S(t) + N (0, τ 2).

In practice, the function M(·| ˜Ht , S) changes value each time a point event is added
to the simulated realisation of the process of interest, and so it will not be known
before carrying out the simulation.

To generate a time series under a preferential sampling design that depends on all
past history of the process, we adapt the R code used by Lapham (2014, p.124–125).

As follows, we start to generate a realization of S, a CAR(1) process2 with α0 = 0.2

and σ 2
w = 1. These values correspond to Var[S(·)] = σ 2 = σ 2

w

2α0
= (1.581)2 and

φ = 1
α0

= 5, being the latter related to the lag beyond which there is no correlation for
practical purposes. The parameter values used to generate the marked point process
are

η = 0.05, ψ = 0.025, β1 = 0.6, γ = 0.1

and to generate the marks yi , we consider μ = 0 and τ = 0.1.

2 We use package yuima, with S0 = 0 and a discretization of time domain in 1600 points equally spaced.
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Fig. 1 Sample times with dependency on all past history of the process and underlying process S (gray
line)

Table 1 Maximum likelihood
estimates, under EVOL
approach and by Kalman filter
approach (CTS): with mean
(standard errors) obtained from a
total of 500 independent samples

True EVOL CTS

μ 0 0.196 (0.267) 0.225 (0.304)

σ 1.581 1.567 (0.204) 1.606 (0.209)

φ 5 5.995 (1.647) 6.188 (1.617)

τ 0.1 0.456 (0.197) 0.483 (0.194)

β1 0.6 0.618 (0.128)

γ 0.1 0.095 (0.026)

Bold values are highlight parameter estimates from standard errors

To illustrate the results of these sampling procedure, we represent in Fig. 1 a real-
ization of the process S (gray line) and the resulting data set.

4.2 Estimation results

For EVOL model, η and ψ parameters have a tuning role. Relatively to η, we ignore
effects from point events occurring before the start of the observation period and we
assume that the initial value of the conditional intensity equals η. Regarding ψ , it
controls the sum value in the ground intensity. Thus, in a first simulation study the
parametersμ, σ, φ, τ, β1 and γ are the target of estimation andwe setη andψ values at
the true ones. For the simulation study we consider a total of 500 independent samples
with at least 50 points over the interval [0, 400]. The results of the mean and the
standard errors for each parameter, obtained from EVOL model, under (9), and from
Kalman filter approach implemented via cts package (Wang 2013), are summarized
in Table 1. In Fig. 2 we have the corresponding boxplots, with true parameter values
marked as red line.

By analysing Table 1 and Fig. 2, we conclude that EVOL model presents more
accurate estimates than Kalman filter approach. The parameter τ seems to be overes-
timated in both approaches. For β1 and γ the estimates are quite reasonable and we
believe that the inclusion of these two parameters in the model is more realistic in real
contexts.
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Fig. 2 Boxplots for models parameters estimated over 500 independent samples with true parameter values
marked as red line, under EVOL and Kalman filter (CTS) approaches

Further studies with different combinations of the parameters, namely for β1 and
γ were analysed. When β1 > γ the conclusions are similar, but when β1 < γ or
β1 > 1 it is necessary to do some calibration work with parameterψ in order to obtain
samples with a reasonable dimension.

4.3 Sensitivity analysis

We conduct a second simulation study aiming: to analyse the impact of also estimating
parameters η andψ ; and to investigate the sensitivity in parameter estimation to initial
values, needed by the iterative procedure supporting the likelihood method.
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Table 2 MLE’s, mean (standard errors) obtained from a total of 200 independent samples, considering as
initial values for EVOL approach the parameters estimated by traditional Kalman filter

True EVOL (True θ0) EVOL (θ0 from Kalman filter )

μ 0 0.239 (0.276) 0.239 (0.276)

σ 1.581 1.526 (0.224) 1.526 (0.224)

φ 5 5.720 (1.429) 5.720 (1.429)

τ 0.1 0.477 (0.202) 0.477 (0.202)

β1 0.6 0.782 (0.325) 0.782 (0.325)

γ 0.1 0.114 (0.065) 0.114 (0.065)

ψ 0.025 0.025 (0.023) 0.025 (0.023)

η 0.05 0.065 (0.021) 0.065 (0.021)

Bold values are highlight parameter estimates from standard errors

Thus, we first consider as initial values (θ0) the “true” values. We then consider:
for μ, φ, σ and τ , the estimates obtained by the traditional Kalman filter approach;
and, for the other parameters, β1 = 0.4, γ = 0.2, η = 0.07 and ψ = 0.035.

The results of the mean and standard errors for each parameter, obtained from a
total of 200 independent samples are summarized in Table 2.

The proposed method seems to be quite robust to initial values and the inclusion
of parameters η and ψ do not cause identifiability issues, only parameter β1 is a little
overestimated. In real data applications η and ψ are the calibration parameters that
need to be tunned, for example, iteratively during the estimation of the model. The
final ML estimates of the model parameters are then obtained for pre-defined values
of η and ψ .

5 Application to real data

We now consider the problem of monitoring the level of two biomedical markers,
platelet (PLT) and hematocrit (HTC), after a cancer patient undergoes a bone marrow
transplant. The data, composed by 54 measurements over 91 days of log(PLT) and
log(HTC) shown in Fig. 3, is studied by Shumway and Stoffer (2017) as missing data
problem. These data are made available in package astsa Stoffer (2017) with the name
of “blood”.

The biomedical marker PLTwas also studied byMonteiro et al. (2018), who present
a model to deal with irregularly spaced time series in which the sampling design only
depends on the contemporaneous value of the underlying process where conditional
on S, T is an inhomogeneous Poisson process with intensity λ (t) = exp {a + βS (t)}
and conditional on S and T , Y is a set of mutually independent Gaussian variates with
τ 2 being themeasurement error variance.We now intend to relate the results of the two
models, both targeting preferential sampling issues. We need to have in mind that the
convergence of the algorithm proposed by Monteiro et al. (2018) is very slow and the
running time becomes burdensome for longer time series and a large number ofMonte
Carlo samples. Besides these, the large variability between likelihood values in each

123



Modelling informative time points: an evolutionary process approach

Fig. 3 Measurements of biomedical markers platelet and hematocrit, in the logarithm scale, log(PLT) and
log(HCT)

Monte Carlo iteration makes the likelihood difficult to optimize. So, we here suggest
an alternative method (henceforth LAP), detailed in Monteiro et al. (2019), that uses
automatic differentiation of a Laplace approximation to the marginal likelihood, as
described in Sect. 3.2, to approximate the integral in the likelihood

L(θ) = [T ,Y ] =
∫

S
[T ,Y , S]dS =

∫

S
[S][T ,Y |S]dS =

∫

S
[S][T |S][Y |T , S]dS

The approximation of the Gaussian process S through the SPDE technique is also
done as explained in Sect. 3.2.

The proposed evolutionary model assumes that β1 ≥ 0, since we are considering
the situation where sampled times are concentrated, predominantly, near the maxima.
As PLT observations are near the minima, we perform an axial reflection around the
mean.

The estimated parameters, for log(PLT) biomedical marker, together with estimated
standard errors are summarized in Table 3.3 Comparing the parameter estimates, we
confirm that for μ, φ, σ and τ the EVOL and LAP approaches are in accordance.

Parameter β1 in (6) is not statistically significant, however γ is significant reinforc-
ing the fact that the distance to the previous observed times is relevant.

The estimated parameters, for log(HTC) marker, together with estimated standard
errors are summarized in Table 4. Parameters β1 and β are not statistical significant.

3 Recall ω is a reparametrization of σ , defined in Eq. (12).
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Table 3 Maximum likelihood estimates under LAP and EVOL for log(PLT)

Parameter LAP model EVOL model

Estimate Standard error Estimate Standard error

μ 4.993 0.290 4.986 0.287

log(ω) 2.545 0.198 2.530 0.198

σ 0.329 0.329

log(φ) 3.559 0.710 3.529 0.708

φ 35.115 34.079

log(τ ) −2.086 0.132 −2.091 0.133

τ 0.124 0.124

β −0.936 0.316 –

β1 – 1.170 0.712

γ – 0.091 0.039

η – 0.002

ψ – 0.077

Table 4 Maximum likelihood estimates under LAP and EVOL for log(HTC)

Parameter LAP model EVOL model

Estimate Standard error Estimate Standard error

μ 3.428 0.019 3.429 0.019

log(ω) 2.372 0.150 2.378 0.147

σ 0.088 0.087

log(φ) 0.567 0.369 0.570 0.366

φ 1.763 1.768

log(τ ) −11.306 3991.8 −8.523 � 0

τ 0.00001 0.0002

β 0.491 1.923 –

β1 – 0.475 1.084

γ – 0.149 0.039

η – 0.002

ψ – 0.028

The lack of significance for parameter φ is in accordance with the low temporal
correlation revealed by the initial analysis of the autocorrelation function.

Prediction

A practical question relevant in the monitoring of biomedical markers, or any other
such quantity, is to predict the time of the next observation of a pre-defined value of the
marker or variable under study. Such prediction may allow a more precise schedule
of visits to the hospital, for example. The theoretical complexity underlying point
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Table 5 Mean absolute percentage error (MAPE) and mean absolute error (MAE) for prediction time t54,
given Y (t54) = 0.356 and all history of the process up to t53. The true t54 is 88

Prediction of time tn

MAPE 1.66%

MAE 1.46

Fig. 4 Boxplot with prediction
errors of predicted tn versus true
tn = 88

processes prediction exercises and the unavailability of explicit numerical solution
(Daley and Vere-Jones 2008) suggest resorting to Monte Carlo approaches. Here we
focus on the ability of our model to predict the hitting time for a given threshold for
the mark based on simulation. In fact, since the expression of the conditional intensity
function is known, simulation of the marked point process is straightforward.

To illustrate the approachwe assume that the process is observed until time t53 = 85
days and predict the time t54 when themarkY (t54) reaches the level assumed of interest
0.356. First we estimate the model EVOL using observations up t53 and proceed using
the simulation design described in Sect. 4.1. The Monte Carlo study comprised 500
replications (R) and the corresponding results are assessed by MAPE4 and MAE5

errors, presented in Table 5. Figure 4 shows the boxplot for prediction errors.
The results indicate that the proposed model may be useful for predictive purposes.

6 Conclusions

In this work, we present a model approach that allows to deal with sampling designs
that depend on all past history of the process. This model allows to take into account
the evolutionary character of the process and is, in our opinion more realistic, since
it also considers the previous observations and the temporal distance to which they
occurred. To specify a process conditional on the past we considered the intensity
function and a marked point process for the times T and marks Y . The results for the
parameter estimation are quite satisfactory, the algorithm is computationally efficient
and provides user high levels of flexibility, due to the direct specification of the joint
likelihood. Further, the proposed model-based approach can be used to obtain pre-

4 MAPE = 1
R

∑R
r=1

∣

∣t54−̂t54,r
∣

∣

t54
× 100%

5 MAE = 1
R

∑R
r=1

∣

∣t54 −̂t54,r
∣

∣
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dictions on the next event, given a possible value for a future mark, allowing a better
knowledge of future events.

Nonetheless, the discussed model presents some difficulties when applied to real
data, namely in the definition of the initial values of the calibration parameters (η and
ψ) and we intend to define a simple method to choose suitable starting values for these
parameters.

It is also of our interest to apply this model in other scientific areas, for example in
the context of financial markets, where the volume of transactions may depend on the
history of the process.
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