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ABSTRACT
This work presents a framework of dynamic structural models with
covariates for short-term forecasting of time serieswith complex sea-
sonal patterns. The framework is based on the multiple sources of
randomness formulation. A noise model is formulated to allow the
incorporation of randomness into the seasonal component and to
propagate this same randomness in the coefficients of the variant
trigonometric terms over time. A unique, recursive and systematic
computational procedure based on the maximum likelihood esti-
mation under the hypothesis of Gaussian errors is introduced. The
referred procedure combines the Kalman filter with recursive adjust-
ment of the covariance matrices and the selection method of har-
monics number in the trigonometric terms. A key feature of this
method is that it allows estimating not only the states of the system
but also allowsobtaining the standard errors of the estimatedparam-
eters and the prediction intervals. In addition, this work also presents
a non-parametric bootstrap approach to improve the forecasting
method based on Kalman filter recursions. The proposed framework
is empirically explored with two real time series.

ARTICLE HISTORY
Received 6 November 2018
Accepted 22 March 2020

KEYWORDS
Bootstrap; Kalman filter;
prediction intervals;
structural time series models;
seasonal time series.

1. Introduction

In modern management operations, forecasting plays a key role. Researches on fore-
cast generally consider three main categories: long-term, medium-term and short-term
forecasts [15,17]. An efficient prediction, for example, can allow a company commit its
resources with greater security to make long-term profits (long-term forecast), since it
helps to identify future demand patterns and facilitates the new products development.
The short-term forecast, for example, is important for studying the balance of national
power grid, which requires a balance between the electricity produced and consumed at
any moment in the day [13].

Forecasting an event depends on how well we understand the factors that contribute
to its occurrence and how much unexplained variability is involved, as well as the factors
determining actual outcomes, types of data patterns, and so on. As for the method (quan-
titative or qualitative), the choice depends on what data are available and the predictability
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of the quantity to be forecast. Since the numerical information is available about the past
of the phenomenon, it is reasonable to assume that some aspects of the past patterns will
continue into the future, the quantitative forecasting can be applied.

There is a wide range of quantitative forecasting models for specific purposes, such
as the models designed in the state-space form, which has deserved much attention by
researchers, among them [2,14,21,22,24,25,27,30,31,37]. This attention is justified, on
the one hand, by the fact that state-space structures are optimal and flexible for class
of exponential smoothing models [25]; on the other hand, such models are very flexi-
ble to incorporate covariates effects [13,16,37,44], as well as to accommodate resampling
methods such as bootstrap methodology [12,28,37,38].

Regardless of how these methods model a time series, implicitly some of these models
assume that past observations of a time series contain all information required for forecast-
ing its future; that is, they forecast the future of a time series using only its past observations
[44]. For this class of models without covariates (with reference to short-term forecast), the
most common models of state-space structure include those underlying the well-known
additive and multiplicative methods of Holt-Winters [18,22,25,33,39–42].

It is obvious that the history of a time series certainly contains information about
its future. However, other information beyond what is available in a time series history
can also shed light on the series movements over time, therefore, lead to more accurate
forecasting of its future if incorporated [44]. Such other information can be provided by
so-called external influence variables (or covariates). Proposals of this type of models can
be seen in [8] with SARIMA (Seasonal Auto-Regressive Integrated Moving Average) and
[2,13,16,27,44].

As Wang [44] also found, the projection of forecast models with covariates has two
fundamental advantages: (i) to take into account the history of the time series of inter-
est and the information hidden in quantifiable covariates, may lead to a more accurate
forecast of the time series of interest; (ii) to forecast, one only needs to know how the time
series of interest move over time. But, in order to make the series to move in the desired
directions, for example, to estimate (in order to reduce or increase) the maximum pro-
duction of electric power due to demand, we need to understand the reasons behind this
demand. Such knowledge can often be learned from its relation to other variables. In this
context, the essential methodological challenge is the ability to relate the history of the
time series to exogenous factors or covariates [16]. Still within the advantages (or impor-
tance) of using covariates for short-term forecasting, we highlight the research works of
[7,13,15,16,23,32,36].

The focus of this work is primarily to explore the use of covariates on short-term fore-
casting of time series with complex seasonal patterns. The framework proposed is inspired
by De Livera et al. [1], who introduced two structures, BATS as an acronym for the main
features of the model: Box-Cox transformation, ARMA errors, Trend, and Seasonal com-
ponents and TBATS with the initial T connoting Trigonometric. The authors estimate the
parameters of these models by exponential smoothing. Among the advantages presented
by TBATS we highlight the following: (i) the ability to accommodate data with non-integer
seasonal periods, high-frequency data and dual calendar effects data; (ii) the Box-Cox
transformation that allows to deal with the non-linearity of the data; (iii) the ARMA process
on residuals to solve the autocorrelation problem. However, we notice that TBATSmodels
are related to ETSmodels, tbats() is fully automatic, is unlikely to over include covariates.
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The fact that TBATS does not allow for covariates which may be important for short-term
forecasting may be pointed out as a disadvantage of these models.

Our proposed framework differs from TBATS approach in four key aspects, namely: (i)
the framework is a state-space formulation with multiple sources of randomness (MSR);
(ii) themodels do not incorporate smoothing parameters; (iii) themodels deal with covari-
ates, but they can work without the covariates; (iv) in the estimation procedure, we used
the Kalman filter (with recursive adjustment of the covariance matrices) to obtain one-
step-ahead forecasting errors and associated variances needed for evaluating fitting criteria
for given trial values of the parameters. For the proposed framework, the Kalman filter is
appropriate in particular. The choice of MSR formulation is justified by the fact that it is
more flexible way to treat the covariates in the proposed framework and using Kalman
filter as an algorithm for statistical treatment. In addition, once our proposed framework
does not incorporate the smoothing parameters, this fact limits the possibility of having
many parameters to estimate. From the forecast point of view, there is a growing inter-
est among researchers in combining the resampling methods with the state-space models
[4,11,12,19,28,37,38,46]. With these ideas, we formulated a bootstrap procedure based on
the residuals trigonometric structural model with covariates.

Our subsequent study has three objectives: (i) to explore the use of covariates in short-
term forecasting of time series with complex seasonal patterns; (ii) to construct a Kalman
filter with recursive adjustment of covariance matrices and to project a computational pro-
cedure for estimation of the proposed models; (iii) to construct a bootstrap procedure for
forecasting. The rest of the work is organized as follows: In Section 2, we provide a brief
review of TBATS models. We then introduce in this Section the new proposed structural
model with covariates (TSCov–Trigonometric Structural models with Covariates) including
its state-space representation and the Kalman filter with recursively covariances computed.
Section 3 contains the empirical fitting of proposed model. Specifically addresses the max-
imum likelihood estimation, the new computational procedure and the model selection
criterion. Section 4 provides the forecasting strategies. Two procedures are presented: the
first is related to the direct use of Kalman filter recursions, the second is based on bootstrap
method. The proposedmodel is then applied in Section 5. Conclusion and future direction
are drawn in Section 6.

2. Models for time series with complex seasonal patterns

2.1. TBATSmodels

TBATS models which is BATS model plus Trigonometric Seasonal models was proposed
by De Livera et al. [1] in order to overcome some weaknesses found on the traditional sea-
sonal exponential smoothing models. The BATSmodel is the most obvious generalization
of the traditional seasonal innovations models to allow for multiple seasonal periods [1],
formulated as follows:

y(ω)
t =

{
yωt −1

ω
se ω �= 0

log yt se ω = 0
(1a)
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y(ω)
t = �t−1 + φbt−1 +

T∑
i=1

s(i)t−mi + dt (1b)

�t = �t−1 + φbt−1 + αdt (1c)

bt = (1 − φ)b + φbt−1 + βdt (1d)

s(i)t = s(i)t−mi + γγγ idt (1e)

dt =
p∑

i=1
ϕidt−i +

q∑
i=1

θiεt−i + εt (1f)

Furthermore, De Livera et al. [1] found that BATS model cannot accommodate non-
integer seasonality. In the quest for a more flexible parsimonious approach, the authors
introduced the following trigonometric representation of seasonal components based on
Fourier series:

s(i)t =
ki∑
j=1

s(i)j,t (2a)

s(i)j,t = s(i)j,t−1 cos λ
(i)
j + s∗(i)

j,t−1 sin λ
(i)
j + γγγ

(i)
1 dt (2b)

s∗(i)
j,t = −s(i)j,t−1 sin λ

(i)
j + s∗(i)

j,t−1 cos λ
(i)
j + γγγ

(i)
2 dt (2c)

wherem1, . . . ,mT denote the seasonal periods, �t is the local level in period t, b is the long-
run trend, bt is the short-run trend in period t, s(i)t represents the ith seasonal component
at time t, dt denotes an ARMA(p, q) process, and εt is a Gaussian white-noise process with
zero mean and constant variance σ 2. The smoothing parameters are given by α,β , γγγ (i),
γγγ

(i)
1 and γγγ

(i)
2 for i = 1, . . . ,T, and λ

(i)
j = 2π j/mi. The stochastic level of the ith seasonal

component is described by s(i)j,t , and the stochastic growth in the level of the ith seasonal
component that is needed to describe the change in the seasonal component over time
is described by s∗(i)

j,t . The number of harmonics required for the ith seasonal component
is denoted by ki. So the new class designated by TBATS, is obtained by replacing the sea-
sonal component s(i)t in Equation (1) by the trigonometric seasonal formulation, and the
measurement equation by

y(ω)
t = �t−1 + φbt−1 +

T∑
i=1

s(i)t−1 + dt . (3)

From a practical point of view, as stated above, tbats() is fully automatic and is unlikely
to over include covariates. In contrast, we introduce a new state-space model with multiple
sources of randomness and covariates, as shown in the next section.

2.2. The TSCovmodel

Let {Yt} = {y1, . . . , yn} be the observed time series and zκ ,t (κ = 1, . . . , r) the set of regres-
sor variables.We notice that our study is limited for cases of additive trends and seasonality.
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In addition, to deal with non-linearity problems, it is assumed that TSCovmodel is appli-
cable to a Box-Cox transformation. Using the same notation as in (1) and (2), the regressor
variables may be incorporated into the TSCovmodel as follows:

y(ω)
t =

{
y(ω)
t −1

ω
se ω �= 0

ln yt se ω = 0
(4a)

y(ω)
t = �t−1 + φbt−1 +

T∑
i=1

s(i)t−mi +
r∑

κ=1
β∗

κ zκ ,t + εt ; εt ∼ iidN (0, σ 2
ε ) (4b)

�t = �t−1 + φbt−1 + ξt ; ξt ∼ iidN (0, σ 2
ξ ) (4c)

bt = (1 − φ)b + φbt−1 + ζt ; ζt ∼ iidN (0, σ 2
ζ ) (4d)

s(i)t =
ki∑
j=1

s(i)j,t (4e)

s(i)j,t = s(i)j,t−1 cos λ
(i)
j + s∗(i)

j,t−1 sin λ
(i)
j + e(i)j,t (4f)

s∗(i)
j,t = −s(i)j,t−1 sin λ

(i)
j + s∗(i)

j,t−1 cos λ
(i)
j + e∗(i)

j,t (4g)

We assume that e(i)j,t = e∗(i)
j,t ∼ iidN (0, σ 2(i)

e ) and εt , ξt , ζt , e
(i)
j,t are independent processes.

As well as in (1) and (2),m1, . . . ,mT represent the seasonal periods and T denotes the sea-
sonal patterns; λ(i)

j = 2π j/mi (j = 1, 2, . . . , ki and i = 1, . . . ,T); �t and bt are the local level

and the short-term trend in period t; b is the long-term trend. s(i)t and s(i)j,t denotes also the
seasonal component in period t and the stochastic level of the ith seasonal component and
s∗(i)
j,t is the stochastic growth in the level of the ith seasonal component that is needed to
describe the change in the seasonal component over time. ki is also the number of har-
monics required for the ith seasonal component, whose approach is equivalent to index
seasonal approaches when ki = mi/2 for even values ofmi, and when ki = (mi − 1)/2 for
odd values ofmi. The transition parameter is bounded by 0 < φ ≤ 1 to prevent a negative
coefficient being applied to bt . In case φ = 0, it would indicate the absence of the trend in
time series.

2.2.1. State-space representation
The linear state-space models can be extended to incorporate the fixed-effects regression.
Such regression effects can be included in one or two different ways: (i) the first approach
is including exogenous or predetermined variables in the signal equation; (ii) the second
approach is including the exogenous or predetermined variables in the state equation. The
above model with fixed-effects regression may be written in a state-space formulation. We
adoptzzzt to represent the vector containing any control inputs (meteorological variables, for
example, air temperature, wind-speed, relative humidity or predetermined variables, itmay
also contain the indicator variables) andΓΓΓ to represent the control inputmatrix (coefficient
matrix formed by regression coefficients β∗

κ which applies the effect of each control input
parameter in zzzt on the observation vector, for example, applies the effect of temperature on
the electricity consumption. The vectorΓΓΓ contains unknown parameters but these do not
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affect the stochastic properties of the model, only enter the model in a deterministic way,
that is, the parameters appearing inΓΓΓ only affect the expected value of the observations yyyt
in a deterministic way. This distinction can become blurred, for example, ifΓΓΓ is a function
of a lagged value of yyyt . If ΓΓΓ is a linear function of unknown parameters, these parameters
can be treated as state variables [21]. So, we wrote the Gaussian linear model in state-space
representation as

y(ω)
t = Atxt + Γ zt + νt t = 1, 2, . . . , n (5a)

xt = Φxt−1 + ηηηt t = 1, 2, . . . , n (5b)

where AAAt is a q × p measurement or observation matrix; (5a) is called the observation
equation. The observed data vector, yt , is q-dimensional, which can be larger than or
smaller than p, the state dimension. (5b) is called the state equation, Φ is a p × p tran-
sition matrix. We suppose we have an r × 1 vector of inputs zt and ΓΓΓ is q × r matrix. νt
and ηt are white noises, being that:

E(νtν
′
t) = R (6a)

E(ηtη
′
t) = Q (6b)

Furthermore, νt and ηt are assumed to be uncorrelated:

E(νtηt) = 0 (7)

xt represents the unobserved state vector. The observation and transition models are rep-
resented by At and Φ matrices, respectively. Given (7), Equation (5b) is typically used to
describe a finite time series of observations y1, y2, . . . , yn and for which assumptions about
the initial value of the state vector are necessary [20]. It is assumed that xt is uncorrelated
with any realization of νt or ηt :

E(νtx′
t) = 0 for t = 1, 2, . . . , n (8a)

E(ηtx
′
t) = 0 for t = 1, 2, . . . , n (8b)

The statement that zt is exogenous or predetermined means that zt does not provide
information about the xt+h or ηt+h for h = 1, 2, . . . beyond the information contained in
yt−1, yt−2, . . . , y1. So, the systemmatrices (5) for TSCovmodel can be obtained by defining:
(i) the state vector, xt = {�t , bt , s(i)1,t , s(i)2,t , . . . , s(i)ki,t , s

∗(i)
1,t , s

∗(i)
2,t , . . . , s

∗(i)
ki,t }, (ii) the replica vector

of 0 and 1 (which depends on the seasonal component) defined as a = (a(1), . . . , a(T))

with a(i) = (1ki , 0ki) and τ = 2
∑T

i=1 ki. (iii) we also need to define the block matrix, B,
resulting from the direct sum,

⊕
, of the matrices Bi, that is, B = ⊕T

i=1 Bi,

Bi =
[
C(i) S(i)

−S(i) C(i)

]
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where, C(i) and S(i) are diagonal matrices of size ki × ki with elements cos(λ(i)
j ) and

sin(λ
(i)
j ), for j = 1, 2, . . . , ki.

B =
T⊕
i=1

Bi =

⎡
⎢⎢⎢⎣
B1 · · · 0

B2
...

...
. . .

...
0 · · · BT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos λ(1)
j sin λ

(1)
j · · · 0

− sin λ
(1)
j cos λ(1)

j
...

...
. . .

...
cos λ(T)

j sin λ
(T)
j

0 · · · − sin λ
(T)
j cos λ(T)

j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The covariance matrices for measurement and the state are given by

R = σ 2
ε and Q(i) =

⎡
⎣σ 2

ξ 0 0
0 σ 2

ζ 0
0 0 q̃(i)

⎤
⎦

where σ 2
ε is the noise variance in the measurement equation, σ 2

ξ and σ 2
ζ , the model vari-

ances corresponding to the level and trend components, q̃(i) given in (9) is the model
variance corresponding the seasonal component.

q̃(i) = {σ̃ 2(1)
e , . . . , σ̃ 2(T)

e }, where σ̃ 2(i)
e = {σ 2(i)

e , σ 2(i)
e∗ } and (9a)

σ 2(i)
e = σ 2(i)

e 1ki (9b)

σ
2(i)
e∗ = σ

2(i)
e∗ 1ki (9c)

Bymodeling in this way, we allow the seasonal component noise to have a dual function:
(i) to be the source of randomness for seasonal component; (ii) propagate the randomness
effect on the stochastically variant trigonometric coefficients terms over time. This way of
modeling the seasonal component variances it is similar to the methodology used by De
Livera et al. [1] to model the smoothing parameter of seasonal component.

The homoscedastic exponential smoothing model (BATS) with covariates can be
obtained by letting xt = {lt , bt , s(i)t , s(i)t−1, . . . , s

(i)
t−(mi−1)}, a(i) = (0mi−1, 1), B = ⊕T

i=1 D̃i,
and by replacing 2ki with mi in the matrices presented above for the TSCov model, that
is, τ = ∑T

i=1mi,

D̃i =
[

0mi−1 1
Imi−1 0′

mi−1

]

where q̃(i) = (σ̃ 2(i)
w , 0mi−1) and σ̃ 2(i)

w = σ
2(i)
w 1mi .

2.2.2. Kalman filter with recursively computed covariances
Given (5), according to the principles featuring a state-space model, the Kalman predic-
tor used when t> s and the Kalman filter applied when t = s are given by (10). For more
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details, see [37].

x̂t|t−1 = Φxt−1|t−1 (10a)

PPPt|t−1 = ΦPt−1|t−1Φ
′ + Q (10b)

xt|t = x̂t|t−1 + K tεt (10c)

Pt|t = Pt|t−1 − Pt|t−1A′
tΣ

−1
t AtPt|t−1 (10d)

where

K t = Pt|t−1A′
t
[
AtPt|t−1A′

t + Rt
]−1 (11a)

εt = y(ω)
t − Atx̂t|t−1 − Γ zt (11b)

Σ t = Var(εt) = AtPt|t−1A′
t + R (11c)

When performing a Kalman filter, the correct setting of the covariance matrices is
critical, since the Kalman filter performance is highly affected by the system covariance
matrices. Its inadequate choice can significantly degrade the performance of Kalman filter
and even make the filter divergent [29]. It is quite common to use ad-hoc procedures to
determine the system of covariance matrices, such as conventional filters [8,14,37], among
others, in whichQ andR are constantmatrices and adjustedmanually by trial and error. To
address this challenge, a Kalman filter with recursively computed covariance is constructed
with reference to [3] and [43] approaches. Now we denote the covariance matrices of mea-
surement and state equations variants over time as Rt andQt . The procedure that we apply
is based on the innovations (a priori and a posteriori) of the model; these will influence the
adjustment of covariance matrices recursively to improve the accuracy of state estimate.
Given (10c), first, set up the a posteriori innovations as

ς t = y(ω)
t − Atxt|t − Γ zt , (12)

then, define the covariance estimates Rt andQt that participate in the recursive process by
synchronizing them with a priori (εt) and a posteriori (ς t) innovations.

For measurement covariance estimation, Rt . Given (11c), the measurement covariance
can be given by

Rt = Σ t − AtPt|t−1A′
t (13)

TheoreticallyΣ t should be set positive. However, the Equation (13) does not guarantee the
positivity of the estimatedmatrix,Rt , because it results from the subtraction of two positive
definite matrices. According to (6a), it is ensured that Rt is a positive definite matrix by
combining covariance with a posteriori innovations, ς t , as in (14).

Σ∗
t = E[ς tς

′
t] = E[νtν′

t] − AtPt|t−1A′
t

Rt = E[ς tς
′
t] + AtPt|t−1A′

t (14)

where, the operation on ς tς
′
t is usually approximated by averaging ς tς

′
t over time t [29].

Instead, we apply the procedure used by Akhlaghi et al. [3], which consists of applying a
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forgetting factor, 0 < δ ≤ 1, to estimate the covariance adaptively, as defined in (15).

Rt = δRt−1 + (1 − δ)(ς tς
′
t + AtPt|t−1A′

t) (15)

For state covariance estimation, Qt . Given (5b), the state covariance estimate, Qt can be
obtained by doing ηt = xt − Φxt−1. Since xt|t is the estimator of xt|t−1, given (10c), the
estimated state error can be given by η̂t = xt|t − Φx̂t|t−1 = K tεt . Its covariance is

E(η̂tη̂
′
t) = E[K t(εtε

′
t)K

′
t] = K tE(εtε

′
t)K

′
t (16)

From (16), given (11c), the covariance estimate of state is given by Q̂t = K tΣ tK ′
t . Using

the same procedure, the estimate of Qt over time is given by (17)

Qt = δQt−1 + (1 − δ)(K tεtε
′
tK

′
t) (17)

3. Empirical fitting of TSCovmodel

3.1. Maximum likelihood estimation

The approach usedwas obtaining the conditional distribution p(xt|y(ω)
t ) of the state xt for a

set of observationsY t−1, [26,47,48].We calculate the conditional densities and the classical
maximum likelihood theory based on the situation by which the n transformed observa-
tions, y(ω)

1 , y(ω)
2 , . . . , y(ω)

n , are independent and identically distributed with � a vector of
unknown parameters, allowed us defining the joint density function as

L(y(ω)
t ,�) =

n∏
t=1

p(y(ω)
t |Y t−1) (18)

where p(y(ω)
t |Y t−1) describes the distribution of y(ω)

t conditioned on the established
information in the period t−1, that is, Y t−1 = {yt−1, yt−2, . . . , y1} [21]. Since x0 ∼
iidN (μ0,Σ0), the distribution of y(ω)

t conditioned to Y t−1 is in itself normal. The mean
and covariance of this distribution are given by Kalman filter from the derivations and the
likelihood is calculated using (11b) and (11c). Then, the likelihood of themodel (5) at time
t for time series possibly transformed1 is given as

L(ΩΩΩ) =
n∏

t=1
gt(y

(ω)
t |y1, . . . , yt−1,ΩΩΩ) =

n∏
t=1

gt(y
(ω)
t |y1:t−1,ΩΩΩ) where

gt(y
(ω)
t |y1:t−1,ΩΩΩ) =

(
1√
2π

)κ ∣∣∣∣Σt

∣∣∣∣−(1/2)

exp
{
−1
2
εεε′
tΣΣΣ

−1
t εεεt

}
, then

gt(yt|y1:t−1,ΩΩΩ) = gt(y
(ω)
t |y1:t−1,ΩΩΩ)

∣∣∣∣det
(

∂y(ω)
t

∂yt

) ∣∣∣∣ = gt(y
(ω)
t |y1:t−1,ΩΩΩ)

n∏
t=1

yω−1
t

=
(

1√
2π

)κ ∣∣∣∣Σt

∣∣∣∣−(1/2)

exp
{
−1
2
εεε′
tΣΣΣ

−1
t εεεt

} n∏
t=1

yω−1
t
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The log-likelihood is given by

L(ΩΩΩ) = −κn
2

log(2π) − 1
2
log |ΣΣΣ t| − 1

2

n∑
t=1

εεε′
tΣΣΣ

−1
t εεεt + (ω − 1)

n∑
t=1

log yt

Multiplying this expression by −1 and omitting constant terms, we get

− L(ΩΩΩ) = 1
2
log |ΣΣΣ t| + 1

2

n∑
t=1

εεε′
tΣΣΣ

−1
t εεεt − (ω − 1)

n∑
t=1

log yt (19)

If there is no need the Box–Cox transformation, the log-likelihood is given by

− L(ΩΩΩ) = 1
2
log |ΣΣΣ t| + 1

2

n∑
t=1

εεε′
tΣΣΣ

−1
t εεεt (20)

3.2. Computational procedure

The functions (19) and (20) are highly nonlinear and complicated functions of the
unknown parameters. The procedure is to fix the initial state vector x0 and develop a
recursive process for log-likelihood function and successively apply the Newton–Raphson
algorithm to update the parameter estimates until the log-likelihood is minimized. The
optimization process is combined with the Kalman filter and conditioned according to
the necessity or not of the Box–Cox transformation. The adopted seasonal formulation
for TSCovmodel requires the estimation of seasonal initial values 2(k1, k2, . . . , kT). In this
work, we apply the method described by De Livera et al. [1], based on the multiple linear
regression for selecting the appropriate number of harmonics in the trigonometric terms.

The parameters are incorporated in the Kalman filter by the following procedure: (i)
construct a vector of unknown parameters, Ω = {σε , σξ , σζ ,φ, σ

2(i)
e , σ 2(i)

e∗ } conditioned to
seasonal patterns, Box–Cox transformation (indicate whether to use the Box-Cox transfor-
mation or no) and damping parameter (indicate whether to include a damping parameter
in the trend or not) and incorporate it into the log-likelihood function of the model, (ii)
incorporate the log-likelihood function in the Kalman filter to ensure step 2 described
below. According to the steps 3 to 5, the optimal values of parameters are determined
by minimizing the MSE (Mean Squared Error) of the one-step-ahead forecasting errors,
through the Newton–Rapson method using the optim r function under the L-BFGS-B
method. We formed a unique, recursive and systematic process combining the Kalman
filter and the multiple linear regression to the Newton–Rapson method. We summarize
the iterative procedure as follows:

(i) Select the initial values of the parameters, �(0). In this step, the transition parameter
is configured with TRUE/FALSE to indicate whether the final model should or not
include damping in the trend. Being set toNULL, the previous two cases are tried and
from AIC the best fitted is selected;

(ii) Run the Kalman filter using the initial values of the parameters,�(0), to obtain the set
of innovations and covariance, that is, {ε(0)

t ; t = 1, . . . , n} and {Σ (0)
t ; t = 1, . . . , n};
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(iii) Perform one iteration of the Newton-Rapson procedure by taking − ln[L(�)] as a
criterion function to obtain the new set of estimates, therefore, �(1). In this step, the
selection procedure of harmonics for seasonal component comes into play;

(iv) At iteration j, (j = 1, 2, . . .), repeat step (ii) using �(j) in place of �(j−1) to obtain a
new set of innovations values {ε(j)

t } and {Σ (j)
t }. Then, step (iii) is repeated to obtain

new estimates, �(j+1).
(v) While run step (iii) in (iv), the Kalman filter is updated with new estimates �(j+1).

The process ends when the estimates or the likelihood stabilize.

Standard errors of parameters estimates (St.Error). Since we use Newton’s procedure, the
Hessian matrix at the time of convergence may be used as an estimate to obtain the stan-
dard errors estimates, that is, we included a numerical evaluation of the Hessian matrix of
− ln[L(�̂)], where Ω̂ΩΩ is the vector of estimated parameters at the time of convergence.

3.3. Model selection

Let x0 be the initial state vector and� the vector of unknown parameters. The Information
Criterion

AIC = L∗(�̂, x̂0) + 2(� + �) (21)

is used for choosing between the models, where � is the number of parameters in � and
� is the number of estimated states, and Ω̂ and x̂0 denote the estimates of � and x0.

4. Forecasting

4.1. Empirical forecasting under TSCovmodel without bootstrap

The Kalman filter equations can deal with missing observations in a natural way. We used
as first forecast strategy the so-called Increasing Horizon Prediction of the State [26]. By
extending the sample data y(ω)

1 , . . . , y(ω)
n as missing values for y(ω)

t with t = n + 1, n +
2, . . ., and applying the Kalman filter to the extended sample, the predictions are pro-
duced. Since zt does not contain information about xt beyond that contained in y1:t−1,
E(xt|zt , y1:t−1) = E(xt|y1:t−1) = x̂t|t−1.

Let ŷyy(ω)
t|t−1 ≡ E(ŷyy(ω)

t |xxxt , y1:t−1) be the forecast of yyyt . From (5a), E(yt|xt , zt) = Atxt + Γ zt
and applying the law of iterated projections, one obtains

ŷ(ω)
t|t−1 = AtE(xt|y1:t−1, zt) + Γ zzzt = Atx̂t|t−1 + Γ zt

and itsMSE is given as 11c.
Covariates forecast strategy. According to Hyndman et al. [25], if the covariates con-

sist of indicator variables, their values are known to a certain future point in time. In
addition, if such indicator variables reflect the effect of known future interventions that
have also occurred in the past, then these values are also known. However, when they are
unknown, predictions of future values of covariates are needed. In this work, we adopt
the exponentially weighted moving average approach to predict covariates. The covariates
are recursively smoothed by calculating the exponentially weighted moving average. In
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this way, the forecast of zt in time t+ 1 is equal to a weighted average of the most recent
observation zt and the previous forecast ẑt|t−1, that is

ẑt+1|t = ρzt + (1 − ρ)ẑt|t−1 (22)

where 0 ≤ ρ ≤ 1 is the smoothing parameter that is typically close to 1. This strategy is
similar to that applied by Dordonnat et al. [13].

Due toMarkov structure in the state dynamics and assumptions about conditional inde-
pendence of observations, the predictive distributions can be recursively calculated. The
Kalman filter update in time t provide xt+1|t and Pt+1|t , used to obtain the one-step-ahead
forecast of y(ω)

t+1. The h-steps-ahead forecast is given by

ŷ(ω)

t+h|t ≡ E(y(ω)
t+1|y1:t−1, zt) = At+1x̂t+1|t + Γ ẑt+h|t (23a)

MSE(ŷ(ω)

t+h|t) = At+hPt+h|tA′
t+h + Rt+h (23b)

where

x̂t+h|t = Φx̂t+h−1|t (24a)

MSE(x̂t+h|t) = Pt+h|t = ΦPt+h−1|tΦ ′ + Qt+h (24b)

The prediction intervals can be obtained directly. Since the h-steps-ahead forecast errors
are Gaussian, we generate the prediction intervals (PI) of the nominal coverage rate of 95%
as,

PI = ŷ(ω)

t+h ± 1.96
√
MSE

(
ŷ(ω)

t+h|t
)
, (25)

4.2. Bootstrap procedure

The combination of state-space models and bootstrap methods currently has received
much attention from researchers [11,12,19,28,37,38]. The results of these works shows that
the combination of bootstrap methods with state-space models is valuable for time series
forecasting, once it can providemore accurate forecasts than individualmethods. The basic
approaches of existing bootstrap methods, one of these approaches is the residual boot-
strap in state-space models. Theoretically, if the model is correctly fitted, the residuals of
the model would be independent and identically distributed. So, it is possible to sample
these residuals with replacement to obtain a replica of the original sample. Then fit the
model to the original sample replica and repeat the process, see [10].

Our proposed bootstrap procedure, whichwe call henceforwardBoot.TSCov, is inspired
by Cordeiro and Neves [12] and Rodrigues and Ruiz [38]. The first goal of our bootstrap
procedure is to improve the forecasting method described in section 4.1. The second goal
is to provide contributions for short-term forecasting of time series with complex seasonal
patterns using bootstrap method, once it is a paradigm that in the scope for forecasting
of time series with complex seasonal patterns still presents a void in the scant existing
literature.
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4.2.1. Boot.TSCov general procedure
First, use the procedure presented in section 3.2 to estimate the initial model TSCov given
in (4) to obtain the sequence of innovations, εt (which must be uncorrelated), and the
fitted values {ŷ1, . . . , ŷn} of the initial estimated model. Second, the standardized innova-
tions, (26a), with the assurance that these innovations have, at least, the same first two
moments, are resampled with replacement b times to obtain a bootstrap sample of stan-
dardized innovations, υ∗s

t (step 3.1). Then, according to Cordeiro and Neves [12] the
bootstrap replica of original time series can be obtained using (26b).

υs
t = Σ

−1/2
t εt (26a)

y∗
t = ŷt + Σ

1/2
t υ∗s

t (26b)

Then, use bootstrap replica, y∗
t , estimate the bootstrapmodel to obtain bootstrap estimates,

�̂
∗
, a priori (ε̂∗

t ) and a posteriori (ς̂
∗
t ) innovations, the state vector and other Kalman filter

derivatives. The forecast up to h-steps-ahead is obtained using the Kalman filter recursions
with bootstrap estimates. Next, we summarize the main steps of our proposed bootstrap
procedure.

4.2.2. Procedure steps
1. Use the iterative procedure described in section 3.2 and estimate the model defined

by (5) to obtain the sequence of innovations, εt ;
2. Compute the standardized innovations using (26a);
3. For each replica B,

3.1 Resamplewith replacement b times the standardized innovations {υs
1,υ

s
2, . . .,υ

s
n}

to obtain the bootstrap sample of standardized innovations {υ∗s
1 ,υ

∗s
2 , . . . ,υ

∗s
n };

3.2 Compute a bootstrap replicate, y∗
t , by Equation (26b) usingυ∗s

t . From the iterative
procedure described in section 3.2, estimate the corresponding bootstrap param-
eters, Ω̂

∗
, and the Kalman filter derivatives, such as a priori (ε̂∗

t ) and a posteriori
(ς̂∗

t ) innovations, the state vector at time t and others;
3.3 Obtain conditional bootstrap h-step-ahead forecast, ŷ∗

t+h|t , from the following
expressions:

x̂∗
t+h|t = Φ̂

∗
x̂∗
t+h−1|t

P̂∗
t+h|t = Φ̂

∗
P̂∗
t+h−1|tΦ̂

∗′
+ Q̂∗

t+h|t

ŷ∗
t+h|t = Â∗

t+hx̂
∗
t+h|t + Γ̂

∗
zt+h

Σ̂
∗
t+h|t = Â∗

t+hP̂
∗
t+h|tÂ

∗′
t+h + R̂∗

t+h|t

Q̂∗
t+h|t = δQ̂∗

t+h−1 + (1 − δ)(K̂∗
t ε̂

∗
t ε̂

∗′
t K̂

∗′
t )

R̂∗
t+h|t = δR̂∗

t+h−1 + (1 − δ)(ς̂
∗
t ς̂

∗′
t + Â∗

t+hP̂
∗
t+h−1|tÂ

∗
t+h)

where, ς̂∗
t = yt − Â∗

t x̂
∗
t|t − Γ̂

∗
t zt and ε̂

∗
t = yt − Â∗

t x̂
∗
t|t−1 − Γ̂

∗
t zt . The hat on thematri-

cesmeans that they arematrices estimated by bootstrap and used for forecast. By taking the
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Figure 1. Complex seasonality showing: (a) Hourly NO2 concentrations levels (with multiple seasonal
periods) measured from October 1st and December 31st in 2014 in Paredes/Portugal, including Temper-
ature, Relative humidity and Wind-speed as covariates also observed at hourly intervals; (b) Weekly US
finishedmotor gasoline products in thousands (with non-integer seasonal periods), from February 1991
to July 2005.

average (ŷH) of the empirical distribution of ŷ∗
t+h|t , the prediction intervals are generated

as (25).

5. Applications to real time series

The results obtained from the application of TSCov and TBATS to the two complex time
series in Figure 1 are reported in this Section. Each one of time series is splitted into two
parts: fitting set and validation set.

y1, y2, . . . , yn−h︸ ︷︷ ︸
Fitting set

,
Validation set︷ ︸︸ ︷

yn−h+1, . . . , yn

The TSCov model is configured to run with or without covariates. If there is no need to
include covariates in themodel, we only need to set input = 0 and Γ = 0 from the generic
functionwhich projects the Kalman filter. The initialization of parameters is not automatic,
it depends on the features of each dataset used, except the transition parameter, φ. Details
about the initialization for each estimated models are presented in subsections 5.1 and 5.2.

We reported some results of TBATS model to compare with the TSCov model and
Boot. TSCov procedure, for example, using the same nominal coverage rate to generate
the prediction intervals and compare the performance of each model. To assess forecast-
ing performance, we used themean absolute percentage forecast error (MAPE) and the root
mean squared forecast error (RMSE).

5.1. Application tomultiple seasonal patterns data

Figure 1(a) shows the hourlyNO2 concentrations levels, obtained from the online database
on air quality [34]. The dataset under analysis concern 49 stations located over Portugal
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(mainland) fromOctober 1st and December 31st in 2014. The selected period corresponds
to the highest NO2 levels along the year, according to Andreia et al. [5]. The time series
of NO2 denoted by Nt has a daily pattern with period 24 and a weekly seasonal pattern
with period 168. The covariates considered are Temperature, Tt , Relative humidity, Ht ,
and Wind-speed, Wt . We estimated two TSCov models: one model with real covariates
and other with predicted covariates. The series, which consists of 2208 observations, was
split into two segments: an estimation sample period (1488 observations) and a test sam-
ple (720 observations). The point forecasts are obtained only using the Increasing Horizon
Prediction of the State strategy.

A preliminary analysis suggests the following considerations: fit a TBATSmodel toNO2
to determine the cross-correlation function (CCF) between theNO2 residuals, temperature
series, humidity series and wind-speed series. The results (no output is shown) indicates
that the strongest correlations occur at 12-h lag with air temperature (Tt−12), 2-h lag with
relative humidity (Ht−2) and current Wind-speed (Wt).

Initialization of TSCov model with real covariates. The initial mean was fixed at
x0 = 0.7 with uncertainty modeled by the diagonal covariance matrix Σ0ii = 4, for
i = 1, . . . , 16. Initial state covariance values were taken as QQQ0 = diag{σ 2

ξ , σ
2
ζ , σ

2(i)
e } =

{0.004, 0.17, 0.0001, 0.0001} (i = 4). The measurement error covariance was started at
RRR0 = σ 2

ε = 10−8. Initial regression coefficients values was fixed at β∗
1 = β∗

2 = β∗
3 = 0.1,

and the forgetting factor, δ = 0.999.
Initialization of TSCov model with predicted covariates. The initial mean and its

uncertainty (modeled by the diagonal covariance matrix) was fixed at xxx0 = 0.7 and
Σ0ii = 3.1 (i = 1, . . . , 17), respectively. Initial state covariance values were taken asQQQ0 =
diag{σ 2

ξ , σ
2
ζ , σ

2(i)
e } = {0.004, 0.045, 0.001, 0.001} (i = 4). The measurement error covari-

ance was started at RRR0 = σ 2
ε = 10−6. Initial regression coefficients values was fixed at

{β∗
1 ,β

∗
2 ,β

∗
3 } = 0.01, and the forgetting factor, δ = 0.8.

The TBATS models are implemented in the forecast r package [45]. Therefore, its
initialization process is automatic.

Figure 2 shows the residual analysis. For TSCovmodel with real covariates, Figure 2(a),
the lag 18 is outside the interval, but we view this value as acceptable, since we do not find
any pattern that leads us to believe that we have missed a structural dynamic feature in
the time series. The Ljung-Box test provides a Chi-square value equal to 29.154, with 19
degrees of freedom and p-value = .164, allowing not to reject the null hypothesis that the
residuals are independent. The required number of significant harmonics for the trigono-
metric terms of daily seasonal patternwith periodicity 24was k1 = 5 and k2 = 3 for weekly
seasonal pattern with periodicity 168. For TBATS model, Figure 2(b), the correlation in
lags 23 and 24 shows that the model does not capture all the dynamics well. However, the
Ljung-Box test provides a Chi-square value equal to 19.443 with 18 degrees of freedom and
p-value = .265, we also do not reject the null hypothesis.

Table 1 reports the estimated parameters of TSCovmodelwith real covariates and TBATS
model. Almost all of the estimates are significant. The estimated φ̂ from TBATS model
does not suggest the damping effect in the trend component, unlike TSCov model that
suggests a damping effect in the trend component. The measurement uncertainty was, in
general, large at σ 2

ε = 2.294, compared with themodel uncertainties of the level, trend and
seasonal.
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Figure 2. Autocorrelation plots of the one-step-ahead forecasting errors under the: (a) TSCov model
(with real covariates) and (b) TBATS model for NO2 levels data. Dashed: confidence intervals of level
95%.

Table 1. Estimated parameters and their standard errors
obtained from TSCov model (with real covariates): NO2 levels
in Paredes/Portugal.

Estimated models for NO2 concentrations

Parameter MLE (TSCov) St.Error MLE(TBATS)

β∗
1 −0.724 0.437 –

β∗
2 −0.007 0.013 –

β∗
3 0.257 0.035 –

ω – – –
α – – 0.039
β – – 0.0002
φ 0.947 0.175 1
σ 2

ε 2.294 0.161 –
σ 2

ξ 1.596 0.073 –
σ 2

ζ 0.091 0.036 –
σ 2
e {0.002; 0.019} {0.012; 0.022} –

σ 2
e∗ {0.012;−0.048} {0.164; 0.011} –

γ1 – – {−10−4;−2.10−6}
γ2 – – {−3.10−5; 3.10−5}
Note: The table also shows the parameters obtained from TBATSmodel.

Wemay also consider forecasting theNO2 series, and the result of a 24-steps-ahead fore-
cast is shown in Figure 3(a). Using the same nominal coverage rate, 95%, we generate the
prediction intervals for both models, Figure 3(b). As it can be seen the prediction inter-
vals based on the proposed TSCovmodel are narrower and more regular over the forecast
horizon and cover all future values than those obtained with TBATSmodel.

Table 2 shows the forecasts accuracy computed using real and predicted covariates for
TSCovmodel. It should be noted that, for TSCovmodel (with real or predicted covariates),
the RMSE provided values that we consider small in almost all forecast horizons, unlike
the TBATS model that provided higher values for higher forecast horizons. In addition,
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Figure 3. Forecasts up to 24-steps-ahead of NO2 levels in Paredes/Portugal under the: (a) TSCovmodel
(with real covariates) and TBATSmodel; (b) 95% prediction intervals obtained from TSCov and TBATS
models.

Table 2. Forecasting accuracy up to 24-steps-ahead of NO2
levels in Paredes/Portugal.

TSCova TSCovb TBATS

Horizon RMSE MAPE RMSE MAPE RMSE MAPE

1 – 3 4.127 3.643 4.717 5.217 2.179 6.819
1 – 6 4.067 3.646 4.727 5.387 2.111 6.699
1 – 9 4.206 3.787 4.833 5.287 3.866 9.326
1 – 12 4.246 3.607 5.303 6.513 5.973 11.213
1 – 15 4.293 3.827 5.081 6.571 6.962 12.404
1 – 18 4.361 3.827 5.356 6.581 6.969 15.243
1 – 21 4.388 3.848 5.369 7.748 9.840 15.657
1 – 24 4.495 3.911 5.903 7.804 11.448 17.574
aForecast with real covariates.
bForecast with predicted covariates.

both graphically and in terms of accuracy measures, both are in agreement that the TSCov
model got a good rating.

5.2. Application to non-integer seasonal periods data

Figure 1(b) shows the number of barrels of motor gasoline product supplied in the United
States, in thousands of barrels per day, from February 1991 to July 2005. This dataset was
also used by De liver et al. [1] (see https://robjhyndman.com/publications/complex-seas
onality/). The data are observed weekly and show a strong annual seasonal pattern, where
the length of seasonality of the time series is 365.25/7 ≈ 52.179. According to De Livera et
al. [1], the time series exhibits an upward additive trend and an additive seasonal pattern,
that is, a pattern for which the variation does not change with the level of the time series.

For this case, the TSCovmodel andBoot.TSCov procedure are appliedwithout the inclu-
sion of covariates. The time series consists of 745 observations and was split into two
segments: an estimation sample period (520 observations) and a test sample (225 obser-
vations). The initial model for Boot.TSCov procedure is fitted using the same procedure

https://robjhyndman.com/publications/complex-seasonality/
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Figure 4. Autocorrelation plots of the one-step-ahead forecasting errors under the: (a) TSCov model
without covariates for weekly U.S. Gasoline data; (b) TBATSmodel for weekly U.S. Gasoline data. Dashed:
confidence intervals of level 95%

Figure 5. Increasing State Horizon Strategy – Forecast up to 52-steps-ahead of weekly U.S. Gasoline
data under: (a) TSCov and TBATSmodels; (b) 95%prediction intervals obtained from TSCov and TBATS
models.

described in section 3.2. Thus, the initial mean was fixed at x̂xx0 = 0 with uncertainty mod-
eled by the diagonal covariance matrixΣ0ii = 6.5 (i = 1, . . . , 18), the forgetting factor was
fixed at δ = 0.999. Themeasurement error covariance was started atRRR0 = σ 2

ε = 10−8. The
initial state covariance valueswere taken asQQQ0 = diag{σ 2

ξ , σ
2
ζ , σ

2
w} = {0.0005, 0.0005, 0, 0}.

The point forecasts are obtained using the Increasing Horizon Prediction of the State and
Bootstrap strategies.

Figure 4 shows the residual analysis. We noted that, although the Box–Cox transforma-
tion, the empirical autocorrelation of estimated TBATSmodel shows a negative correlation
for lag 1, Figure 4(b), which is unlikely to be due to random sampling variation. However,
the Ljung-Box test provides a Chi-square value equal to 19,392, with 24 degrees of freedom
and p-value = .731, allowing not reject the null hypothesis. For TSCovmodel, there is no
significant correlations, Figure 4(a). They are all within the 95% confidence interval, which
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Figure 6. Bootstrap Strategy–Forecast up to 52-steps-ahead of weekly production of weekly U.S. Gaso-
line data under: the (a) Boot.TSCov and TBATS models; (b) 95% prediction intervals obtained from
Boot.TSCov and TBATSmodels.

Table 3. Estimated parameters and their standard errors of the TSCov
model for weekly U.S. Gasoline data.

Estimated models for weekly U.S. Gasoline data

Parameter MLE(TSCov) St.Error Boot.TSCov St.Error MLE(TBATS)

ω – – – – 0.709
α – – – – −0.063
β – – – – 0.031
φ 0.829 0.154 0.801 0.457 0.834
σ 2

ε 220.69 1.751 222.25 1.916 –
σ 2

ξ 1094.29 9.597 1143.19 9.947 –
σ 2

ζ 860.39 3.819 991.51 4.022 –
σ 2
w 7.055 0.489 1.249 0.604 –

σ 2
w∗ 2.892 0.216 0.029 0.263 –

γ1 – – – – −0.003
γ2 – – – – 0.002

Note: The table also shows the parameters obtained from TBATSmodel.

is satisfactory. In addition, the Ljung-Box test provides a Chi-square value equal to 11,485,
with 24 degrees of freedom and p-value = .985; we also do not reject the null hypothesis.

Table 3 shows the estimated parameters and both models including Boot.TSCov proce-
dure suggests a damping effect in the trend component. Figure 5(a) shows the 52-steps-
ahead forecasts obtained from TSCov model using Increasing State Horizon strategy and
Figure 6(a) shows 52-step-ahead forecasts obtained from Boot.TSCov procedure. The fore-
casts accuracy are shown in Table 4. As it can be seen, TSCovmodel competes with TBATS
model, but Boot.TSCov procedure performs better for all lead times than TBATS model.
The fitted values of the two models indicate that the forecasts generated by the TSCov
model are closer to the validation series and TBATS model offers smoother fitted values
and forecasts than those obtained from the TSCovmodel.

We may also consider the prediction intervals, see Figures 5(b) and 6(b). Using the
same nominal coverage rate, 95%, the prediction intervals based on the Boot.TSCov pro-
cedure got a good rating compared to those obtained with the TSCov and TBATSmodels.
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Table 4. Forecasting accuracy up to 52-steps-ahead of weekly U.S.
Gasoline data.

TSCova Boot.TSCovb TBATS

Horizon RMSE MAPE RMSE MAPE RMSE MAPE

1 – 7 204.524 2.834 213.342 2.451 269.031 2.446
1 – 14 253.443 3.116 219.713 2.643 269.543 2.691
1 – 21 273.329 3.203 226.368 2.669 272.326 2.687
1 – 28 270.323 3.250 255.145 2.725 275.282 2.711
1 – 35 291.233 3.314 263.405 2.776 278.056 2.745
1 – 42 297.547 3.425 267.096 2.780 281.356 2.760
1 – 49 323.651 3.671 293.612 2.860 296.847 2.936
1 – 52 358.524 3.993 311.634 2.973 359.863 3.906
aForecast (without covariates) obtained using the Increasing Horizon Prediction
of the State strategy.

b Forecast (without covariates) obtained using Bootstrap strategy.

These results allow to conclude that the TSCovmodel and Boot.TSCov procedure are also
pertinent in handling the non-integer seasonality.

6. Conclusion and future direction

The main contribution of this work is to explore the use of covariates in short-term fore-
casting of time series with complex seasonal patterns, as an extension of the TBATSmodel.
Our proposed framework responds two interesting problems: (i) in the field of forecasting,
the proposed framework deals with covariates that may be important for the short-term
forecasting; (ii) from the point of view of formulation, the proposed framework is a new
tool for structural models for modeling and forecasting of time series with complex sea-
sonal patterns. The answer to these ”two” problems is a valuable contribution to limited
existing literature on structural models for predicting time series with complex seasonal
patterns. The formulated bootstrap procedure has as main objective to improve the short-
term forecasting obtained from the usual procedure with Kalman filter recursions. The
procedure was applied satisfactorily and the results show that the proposed bootstrap
procedure provides good results for the used dataset.

The empirical study shows the potential of our proposals as promising methodologies
for short-term forecasting of time series with complex seasonal patterns. The used covari-
ates had a significant impact on the forecast and, as expected, the forecasts obtained were
more accurate under the use of covariables. Our estimation procedure not only obtains
point forecasts andprediction intervals, but also allows to obtain the standard errors of each
estimated parameter. However, our proposed methodologies can be improved in several
ways and we can see some lines of future work listed below:

• Automatic selection of covariates. Some study can be done in this line for the automatic
selection of candidate covariates to the estimated final model;

• Estimator of the coefficient matrix, Γ . The state spacemodel given in (5) involves covari-
ates in the measurement equation. However, the Kakman filter constructed for this
model does not provide the estimator of the coefficient matrix Γ . An updated estimate
of this matrix can be obtained by applying the Expectation Maximization algorithm
(EM) [6];
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• Multivariate analysis. When significant dependencies between individual time series
can not be ignored, multivariate time series need to be introduced. A projection of the
proposed framework to deal with multivariate time series is necessary. Our study was
done for the univariate case. But the proposed framework can ”easily” be reformulated
to the multivariate case.

Finally, with this work, a question can be made here: which models are preferred to
use, TSCov and TBATS? It should, however, be noted from the results that there is lit-
tle distinction between the two models, therefore, the immediate response is, the TSCov
approach which is preferable if there are covariates that are useful predictors since they
can be added as regressors and improve the forecasts.

All computational results of this work were obtained with the R software environment
[35].

Note

1. Transformation Box-Cox [9]. If Box–Cox transformation is required, the point forecasts and
forecast intervals may be obtained using the inverse Box–Cox transformation of appropriate
quantiles of the distribution of y(ω)

t+h|t . Moreover, the prediction intervals retain the probabil-
ity of coverage required by the back-transformation because the Box–Cox transformation is
monotone increasing [1].

Acknowledgements

The authors thank the Portuguese Environment Agency and Professor Robin John Hyndman for
providing the data used in this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was partially supported by the Center for Research and Development in Mathematics
and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT
– Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 andUIDP/04106/2020 and
ENAGBE (National Institute of Managment of Scholarships) – Angola.

ORCID

Maria Eduarda Silva http://orcid.org/0000-0003-2972-2050

References

[1] Alysha M. De Livera, Rob J. Hyndman, and Ralph D. Snyder, Forecasting time series with
complex seasonal patterns using exponential smoothing, J. Am. Stat. Assoc. 106 (2011), pp.
1513–1527. doi:10.1198/jasa.2011.tm09771.

[2] F.O. Ahmad and L.K. Maxwell, Exponential smoothing with regressors: estimation and initial-
ization, Model. Assist. Stat. Appl. 10 (2015), pp. 253–263.

http://orcid.org/0000-0003-2972-2050
https://doi.org/10.1198/jasa.2011.tm09771


22 A. C. PUINDI ANDM. E. SILVA

[3] S. Akhlaghi, N. Zhou, and Z. Huang, Adaptive adjustment of noise covariance in Kalman filter
for dynamic state estimation, 2017 IEEE Power & Energy Society General Meeting, Chicago,
IL, 2017, pp. 1–5.

[4] A.M. Alonso, C. Garcia-Martos, J. Rodriguez, andM.J. Sanchez, Seasonal dynamic factor anal-
ysis and bootstrap inference: application to electricity market forecasting, Technometrics 53(2)
(2011), pp. 137–151. doi:10.1198/TECH.2011.09050.

[5] M. Andreia, R. Menezes, and M. Eduarda Silva, Modelling spatio-temporal data with multiple
seasonalities: the NO2 Portuguese case, Spat. Stat. 22 (2017), pp. 1–25.

[6] H.N. Arlene, State space models with exogenous variables and missing data, PhD thesis,
University of Florida, 2007.

[7] A. Ba, M. Sinn, Y. Goude, and P. Pompey, Adaptive learning of smoothing functions: application
to electricity load forecasting, in Advances in Neural Information Processing Systems. 25, P.
Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds. MIT Press: Cambridge, MA,
2012, pp. 2519–2527.

[8] P.J. Brockwell and R.A. David, Introduction to Time Series and Forecasting, 2nd ed. Springer-
Verlang, New York, 2002.

[9] G. Box andD. Cox,An analysis of transformations, J. R. Stat. Soc.; Ser. B 26 (1964), pp. 211–252.
[10] M.R. Chernick and R.A. LaBudde, An Introduction to Bootstrap Methods with Applications to

R, Wiley, 2011. pp. 3–129.
[11] B. Christoph, R.J. Hyndman, and J.M. Benitez, Bagging exponential smoothing methods using

STL decomposition and Box-Cox transformation, Int. J. Forecast. 32 (2015), pp. 2–18.
[12] C. Cordeiro and M.M. Neves, Forecasting with exponential smoothing methods and bootstrap,

REVSTAT–Stat. J. 7(2) (2009), pp. 135–149.
[13] V. Dordonnat, S.J. Koopman, M. Ooms, A. Dessertaine, and J. Collet, An hourly periodic

state space model for modelling French national electricity load, Int. J. Forecast. 24 (2008), pp.
566–587.

[14] J. Durbin and S.J. Koopman, Time Series Analysis by State Space Methods, Oxford University
Press, 2011.

[15] S. Fan and R.J. Hyndman, Short-term load forecasting based on a semi-parametric additive
model, IEEE Trans. Power Syst. 27 (2012), pp. 134–141.

[16] R. Gob, K. Lurz, and A. Pievatolo, Electrical load forecasting by exponential smoothing with
covariates, Appl. Stoch. Model. Bus. Ind. 29 (2013), pp. 629–645.

[17] H.L. Shang, Functional time series approach for forecasting very short-term electricity demand,
J. Appl. Stat. 40 (2013), pp. 152–168. doi:10.1080/02664763.2012.740619.

[18] P.G. Gould, A.B. Koehler, F. Vahid-Araghi, R.D. Snyder, J.K. Ord, and R.J. Hyndman, Forecast-
ing time-series with multiple seasonal patterns, Eur. J. Oper. Res. 191 (2008), pp. 207–222.

[19] G. Hafida and F. Hamdi, Bootstrapping periodic state-space models, Commun. Stat. Simul.
Comput. 44 (2015), pp. 374–401.

[20] J.D. Hamilton, Time Series Analysis. Vol. 41, William St. Princeton ed. Princeton University
Press, New Jersey, 1994. p. 08540, 1994.

[21] A.C. Harvey, Forecasting, structural time series models and the Kalman Filter, Cambridge
University Press, Cambridge, 1989.

[22] A.C. Harvey and S.J. Koopman, Forecasting hourly electricity demand using timevarying splines,
J. Am. Stat. Assoc. 88 (1993), pp. 1228–1236.

[23] J. Hinman and E. Hickey, Modeling and forecasting short-term electricity load using regression
analysis.University of Illinois Research Report, Chicago, IL, 2009.

[24] R.J. Hyndman, A.B. Koehler, R.D. Snyder, and S. Grose, A state space framework for automatic
forecasting using exponential smoothing methods, Int. J. Forecast. 18 (2002), pp. 439–454.

[25] R.J. Hyndman, A.B. Koehler, J.K. Ord, and R.D. Snyder, Forecasting with Exponential Smooth-
ing: The State Space Approach, Springer-Verlang, 2008.

[26] G. Kitagawa, Introduction to Time Series Modeling, CRC Press, Boca Raton, 2010.
[27] A.B. Koehler, R.D. Snyder, J.K. Ord, and A. Beaumont, A study of outliers in the exponential

smoothing approach to forecasting, Int. J. Forecast. 28 (2012), pp. 477–484.

https://doi.org/10.1198/TECH.2011.09050
https://doi.org/10.1080/02664763.2012.740619


JOURNAL OF APPLIED STATISTICS 23

[28] J.C. Menezes, V.V. Lopes, and C.C. Pinheiro, Determination of state-space model uncertainty
using bootstrap techniques, J. Process. Control. 16 (2006), pp. 685–692.

[29] A. Mohamed and K. Schwarz, Adaptive Kalman Filtering for INS/GPS, J. Geod. 73 (1999), pp.
193–203. doi:10.1007/s001900050236.

[30] J. Ord, A.B. Koehler, and R.D. Snyder, Estimation and prediction for a class of dynamic nonlinear
statistical models, J. Am. Stat. Assoc. 92 (1997), pp. 1621–1629.

[31] J. Ord, R.D. Snyder, A.B. Koehler, R.J. Hyndman, andM. Leeds, Time series forecasting: the case
for the single source of error state space approach, Unpublished manuscript, Monash University,
2005, pp. 2–33.

[32] A.D. Papalexopoulos and T.C. Hesterberg, A regression-based approach to short-term system
load forecasting, IEEE Trans. Power Syst. 5 (1990), pp. 1535–1547. doi:10.1109/59.99410.

[33] D.J. Pedregal and P.C. Young,Modulated cycles, an approach to modelling periodic components
from rapidly sampled data, Int. J. Forecast. 22 (2006), pp. 181–194.

[34] QualAr:Online database on air quality, 2015. Available at https://qualar.apambiente.pt/qualar/
index.phpSEP.

[35] R Core Team: R: A language and environment for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria, 2017; software available at https://www.R-project.org.

[36] R. Ramanathan, R. Engle, C.W.J. Granger, F. Vahid-Araghi, and C. Brace, Shorte-run forecasts
of electricity loads and peaks, Int. J. Forecast. 13 (1997), pp. 161–174. doi:10.1016/S0169-
2070(97)00015-0.

[37] H.S. Robert and David S. Stoffer, Time Series Analysis and Its Applications: With R Examples,
4th ed., Springer, New York, 2017.

[38] A. Rodriguez and E. Ruiz, Bootstrap prediction intervals in state-space models, J. Time Ser. Anal.
30 (2009), pp. 167–178.

[39] J.W. Taylor, Short-term electricity demand forecasting using double seasonal exponential smooth-
ing, J. Operat. Res. Soc. 54 (2003), pp. 799–805.

[40] J.W. Taylor and R. Buizza, Using weather ensemble predictions in electricity demand forecasting,
IEEE Trans. Power Syst. 19 (2003), pp. 57–70.

[41] J.W. Taylor, Triple seasonal methods for short-term electricity demand forecasting, Eur. J. Operat.
Res. 204 (2010), pp. 139–152.

[42] J.W. Taylor and R.D. Snyder, Forecasting intraday time series with multiple seasonal cycles using
parsimonious seasonal exponential smoothing, Omega 40 (2012), pp. 748–757.

[43] J. Wang, Stochastic modeling for real-time kinematic gps/glonass positioning, Navigation 46
(2000), pp. 297–305.

[44] S. Wang, Exponential smoothing for forecasting and Bayesian validation of computer models,
PhD thesis, Georgia Institute of Technology, 1, 2006, pp. 96–126.

[45] S. Razbash and R.J. Hyndman, Forecasting functions for time series and linear models, cran.r-
project.org, Package forecast, 2018.

[46] K.D.Wall andD.S. Stoffer,A state space approach to bootstrapping conditional forecasts inARMA
models, J. Time Ser. Anal. 23 (2002), pp. 733–751.

[47] G. Welch and G. Bishop, An Introduction to the Kalman Filter, Chapel Hill, NC, 2001.
27599:3175, Unpublished manuscript.

[48] P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering: A Practical Approach, 3rd ed.,
American Institute of Aeronautics and Astronautics Inc, 2009.

https://doi.org/10.1007/s001900050236
https://qualar.apambiente.pt/qualar/index.php
https://www.R-project.org

	1. Introduction
	2. Models for time series with complex seasonal patterns
	2.1. TBATS models
	2.2. The TSCov model
	2.2.1. State-space  representation
	2.2.2. Kalman filter with recursively computed covariances


	3. Empirical fitting of TSCov model
	3.1. Maximum likelihood estimation
	3.2. Computational procedure
	3.3. Model selection

	4. Forecasting
	4.1. Empirical forecasting under TSCov model without bootstrap
	4.2. Bootstrap procedure
	4.2.1. Boot.TSCov general procedure
	4.2.2. Procedure steps


	5. Applications to real time series
	5.1. Application to multiple seasonal patterns data
	5.2. Application to non-integer seasonal periods data

	6. Conclusion and future direction
	Note
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

