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Abstract

Information storage, reflecting the capability of a dynamical system to
keep predictable information during its evolution over time, is a key ele-
ment of intrinsic distributed computation, useful for the description of the
dynamical complexity of several physical and biological processes. Here
we introduce a parametric approach which allows to compute information
storage across multiple time scales in stochastic processes displaying both
short-term dynamics and long-range correlations (LRC). Our analysis is
performed in the popular framework of multiscale entropy, whereby a time
series is first ’coarse grained’ at the chosen time scale through lowpass fil-
tering and downsampling, and then its complexity is evaluated in terms
of conditional entropy. Within this framework, our approach makes use of
linear fractionally integrated autoregressive (ARFI) models to derive ana-
lytical expressions for the information storage computed at multiple time
scales. Specifically, we exploit state space models to provide the represen-
tation of lowpass filtered and downsampled ARFI processes, from which
information storage is computed at any given time scale relating the pro-
cess variance to the prediction error variance. This enhances the practical
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usability of multiscale information storage, as it enables a computation-
ally reliable quantification of a complexity measure which incorporates the
effects of LRC together with that of short-term dynamics. The proposed
measure is first assessed in simulated ARFI processes reproducing differ-
ent types of autoregressive (AR) dynamics and different degrees of LRC,
studying both the theoretical values and the finite sample performance.
We find that LRC alter substantially the complexity of ARFI processes
even at short time scales, and that reliable estimation of complexity can
be achieved at longer time scales only when LRC are properly modeled.
Then, we assess multiscale information storage in physiological time se-
ries measured in humans during resting state and postural stress, revealing
unprecedented responses to stress of the complexity of heart period and
systolic arterial pressure variability, which are related to the different role
played by LRC in the two conditions.

1 Introduction
Several physical and biological systems, such as climatic systems, econometric
systems, the brain or the cardiovascular system, exhibit a rich dynamical ac-
tivity that stems from the coexistence of self-sustained oscillators, interacting
subsystems and feedback loops reacting to internal and external inputs Donges
et al. (2009); Rosser (1999); Chialvo (2010); Kaplan et al. (1991). This multi-
faceted organization results in a complex system evolution over time, which is
often revealed by the time course of a systemic variable like the global temper-
ature, the stock market, the brain wave amplitude, or the heart period. In the
recent past, several techniques have been proposed which aim at quantifying
the richness of a dynamic process, usually indicated as “dynamical complexity”
Pincus (1991); Porta et al. (1998); Richman and Moorman (2000); Valente et al.
(2018); Porta et al. (2012); Costa et al. (2002). These methods have potentially
important applications regarding both the characterization of the system state
and the extraction of diagnostic parameters; for instance, a reduction of dy-
namical complexity may be associated with a reduced capability of subsystems
to interact and, in physiological systems, has been proposed as a feature of
pathologic behaviors Pincus (1994); Goldberger et al. (2002).

A common approach to assess the complexity of a time series intended as
a realization of a dynamic process is that of quantifying the degree of irregu-
larity, or unpredictability, of patterns extracted from the series. This approach
has been pursued by studies proposing measures derived from linear or non-
linear prediction Porta et al. (2007b); Erla et al. (2011); Faes et al. (2015), or
based on the concept of conditional entropy Pincus (1991); Porta et al. (1998);
Richman and Moorman (2000), to quantify the dynamical complexity of a pro-
cess. On the other hand a closely related complementary measure, which has
been taking place recently in the frame of information theory, is the amount of
information stored in a dynamic system. The so-called information storage is
defined as the information contained in the past history of a stochastic process
that can be used to predict its future Lizier et al. (2012). This measure has a

2



straightforward information-theoretic formulation as it quantifies the informa-
tion shared between the current state of a process and its past states. Moreover,
besides reflecting the regularity of a dynamic process intended as a complemen-
tary measure of its complexity, this quantity is recognized as one of the three
key component processes constituting every act of information processing in a
network of interacting systems (i.e., information storage, transfer, and modifi-
cation) Wibral et al. (2014). As such, information storage is considered as a
crucial aspect of the dynamics of several processes ranging from human brain
networks Kitzbichler et al. (2009) to artificial networks Boedecker et al. (2009)
and robot motion Ay et al. (2008), and has been successfully proposed to de-
scribe the regularity of brain Wibral et al. (2014), cerebrovascular Faes et al.
(2013), cardiorespiratory Faes et al. (2015) and cardiovascular Faes et al. (2016)
dynamics.

Another fundamental question about the analysis of complexity or regu-
larity is the evaluation of these properties for stochastic processes displaying
multiscale dynamical structures. It is indeed well known that a large variety of
complex systems exhibit peculiar oscillatory activities which span several differ-
ent temporal scales Ivanov et al. (1999); Costa et al. (2002); Wang et al. (2013);
Faes et al. (2017c). Since measures of complexity/regularity based on condi-
tional entropy/information storage Pincus (1991); Porta et al. (1998); Richman
and Moorman (2000); Lizier et al. (2012) are not scale-specific, a common way
to explore multiscale properties is to apply them after “rescaling” the observed
process to focus on a specific range of temporal scales. This approach has been
first proposed with the definition of the concept of multiscale entropy Costa
et al. (2002), which consists in computing the conditional entropy of the ob-
served process (through the Sample Entropy measure Richman and Moorman
(2000)) after eliminating the fast temporal scales through of a lowpass filter
followed by downsampling. Even though this approach lacks of solid theoretical
grounds (e.g., it does not achieve a scale decomposition of variance, entropy,
or conditional entropy), the resulting measures are of great practical relevance.
Indeed, multiscale entropy is extremely popular and has been used, either in
its original formulation or in refined versions Valencia et al. (2009), to assess
multiscale complexity in a big amount of works within several different fields of
science Costa et al. (2003, 2005); Ahmed and Mandic (2011); Humeau-Heurtier
(2015); Wang et al. (2013); Faes et al. (2017a); Valencia et al. (2009); Faes et al.
(2017c,b); Escudero et al. (2006); Catarino et al. (2011); Martina et al. (2011).

Nevertheless, the approach underlying the computation of multiscale en-
tropy and related measures suffers also from practical shortcomings, the main
being its inapplicability to short time series which stems from the difficulty of
estimating entropies for multidimensional variables, exacerbated by issues re-
lated to the filtering and downsampling steps necessary for its calculation. In
the present study, we overcome this limitation exploiting an approach based on
linear autoregressive (AR) models Faes et al. (2017c). This approach computes
complexity from the parameters of a state space (SS) model which represents
the rescaled version of the original AR process obtained through the filtering
and downsampling steps. The approach is implemented here for the computa-
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tion of storage across multiple temporal scales. Importantly, we also extend the
SS formulation to account for the effect of long range correlations. In fact, many
natural phenomena exhibit slowly decaying serial correlations, or equivalently a
spectrum with an hyperbolic behaviour at the origin, f(λ ∼ |λ|−2d). This behav-
ior has been named long-memory or long range correlation Beran et al. (2012)
and is related to self-similar processes, also known as fractals, and the so called
1/f noise. Long range correlations have an effect upon the scaling properties
displayed across time scales by a broad class of dynamic processes Ivanov et al.
(1999); Bernaola-Galván et al. (2001); Chen et al. (2005); Xiong et al. (2017),
and are thus a fundamental aspect of multiscale processes. Moreover, long range
correlations are manifested also at short time scales and within the short time
windows typically used for the computation of complexity measures, thus co-
existing with short-term dynamics and having an impact on the assessment of
their complexity Xiong et al. (2017). In spite of this, methods are lacking which
are able to describe quantitatively the multiscale complexity or regularity of
stochastic processes in the presence of long range correlations. Here, we fill this
gap by providing theoretical formulations and practical estimation of multiscale
information storage for stochastic processes with long range correlations, which
are suitably described by fractionally integrated autoregressive (ARFI) models.

The framework for multiscale analysis of information storage developed in
this work is implemented as a part of the Linear Multiscale Entropy (LMSE)
Matlab toolbox. The toolbox is freely available for download from http://www.lucafaes.net/LMSE.html.

2 Methods

2.1 Linear Stochastic Processes with Long Range Corre-
lations

We start recalling the classic parametric approach to the description of linear
Gaussian stochastic processes exhibiting both short-term dynamics and long-
range correlations, which is based on representing a discrete-time, zero-mean
stochastic process Xn, −∞ < n <∞, as a fractionally integrated autoregressive
(ARFI) process fed by uncorrelated Gaussian innovations En. The ARFI process
takes the form:

A(L)(1− L)dXn = En (1)

where L is the back-shift operator (LiXn = Xn−i), AL = 1 −
p∑
i=1

AiL
i is an

autoregressive (AR) polynomial of order p and (1− L)d is the fractional differ-
encing operator defined by Beran et al. (2012):

(1− L)d =

∞∑
k=0

GkL
k , Gk =

Γ(k − d)

Γ(−d)Γ(k + 1)
, (2)

with Γ(·) denoting the gamma (generalized factorial) function. The parameter
d in (1) determines the long-term behavior of the process, while the coefficients
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of the polynomial A(L), i.e. Ai, i = 1, . . . , p, allow description of the short-
term dynamics. The ARFI model is stationary for −0.5 < d < 0.5, while
it is nonstationary but mean reverting for 0.5 ≤ d < 1. The ARFI model
may be extended to nonstationary settings by allowing d to be written as d =
dLM +D > 1 with −0.5 < dLM < 0.5 and D ∈ {1, 2, . . .}. The most usual case
occurs with D = 1, when the process is said to have a unit root: the ARFI(p, d)
formulation is, then, used to model the increments of the series, that is the
differences between consecutive observations. Note that the process defined in
(1) is a particular case of the broader class of ARFIMA(p,d,l) processes, which
also contains the class of autoregressive processes AR(p); here we restrict our
analysis to the description of the ARFIMA(p,d,0) process, which we denote as
an ARFI(p,d) process.

The parameters of the ARFI model (1), namely the coefficients of A(L)
and the variance of the innovations ΣE , are obtained from process realizations
of finite length first estimating the differencing parameter d by means of the
Whittle semi-parametric local estimator Beran et al. (2012), then defining the
filtered data X

(f)
n = (1 − L)dXn, and finally estimating the AR parameters

from the filtered data X(f)
n using the ordinary least squares method to solve the

AR model A(L)X
(f)
n = En, with model order p assessed through the Bayesian

information criterion Faes et al. (2012).

2.2 Measures of Information Storage
The information storage of a dynamical system that produces entropy with a
non-zero rate is a quantity related to how much the system is able to share
information during its evolution across time. Considering a system X whose
activity is defined by the stochastic process X, let us define as Xn the random
variable describing the present state of the system, and as X−n = [Xn−1Xn−2...]
the infinite-dimensional vector variable describing its past states. Then, the
information stored in the system is defined as

SX = I(Xn;X−n ) = E

[
log

p(xn, xn−1, . . .)

p(xn)p(xn−1, xn−2, . . .)

]
, (3)

where I(·; ·) denotes mutual information, p(·) denotes probability density func-
tion, and the expectation is taken over several realizations (xn, xn−1, . . .) of the
random variables (Xn, Xn−1, . . .).

Even though information storage has been long recognized as an important
aspect of the dynamics of complex systems, it has been formalized only recently
as in Eq. (3) as the amount of information shared between the present and the
past states of a dynamic process Lizier et al. (2012). From the point of view of
the dynamic update of the state of a time-evolving system, the information stor-
age is complementary to a well-known measure of system complexity quantified
in terms of entropy rate, i.e. the conditional entropy of the present state of the
system given its past states, CX = H(Xn|X−n ) which indeed can be related to
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SX by simple information-theoretic rules:

SX = H(Xn)−H(Xn|X−n ) = HX − CX , (4)

where HX = H(Xn) is the entropy of the present system state. The conditional
entropy is typically computed, from short realizations of the studied process,
limiting the past history X−n to a small number of lags, and performing non-
parametric estimation of the associated probability density functions Xiong et al.
(2017); even with this simplification, multiscale computation of the conditional
entropy cannot be reliably performed at long time scales. Here, to overcome
these limitations we restrict the analysis to Gaussian processes for which exact
expressions for conditional entropy and information storage are derived (see
the next subsection for the multiscale formulation). Specifically, we exploit the
relation stated in (4) and particularize it to the case of linear systems which
can be fully described using an ARFI dynamic process in the form of Eq. (1).
Specifically we note that, given the ARFI representation, the entropy of the
present state of the process and the conditional entropy of the present given the
past can be expressed analytically in terms of the variance of the process Xn,
ΣX , and the variance of the innovations En, ΣE , as Faes et al. (2015); Cover
et al. (1994); Barnett and Seth (2015):

H(Xn) =
1

2
ln 2πeΣX , (5a)

H(Xn|X−n ) =
1

2
ln 2πeΣE , (5b)

from which the analytical formulation of the information storage follows imme-
diately:

SX =
1

2
ln

ΣX
ΣE

. (6)

To compute the information storage according to Eq. (6), we need to find
an expression for the process variance ΣX starting from the ARFI parameters d
and A(L) obtained as described in Sect. II.A (which allows computation also of
the innovation variance ΣE). To do this, first we approximate the ARFI process
(1) with a finite order AR process by truncating the fractional integration part
at a finite lag q:

(1− L)d ≈ G(L) =

q∑
k=0

GkL
k, (7)

so that the ARFI(p, d) process can be rewritten as an AR(p+ q) process:

B(L)Xn = En, (8a)

B(L) = A(L)G(L) =

(
1−

p∑
i=1

AiL
i

)
q∑

k=0

GkL
k. (8b)

6



The coefficients of the AR polynomial B(L) = 1 −
p+q∑
k=0

BkL
k result from the

multiplication of the two polynomials in (8b), which in the case q ≥ p yields:

B0 = 1 ,

Bk =



−Gk +
k∑
i=1

Gk−iAi, k = 1, . . . , p

−Gk +
p∑
i=1

Gk−iAi, k = p+ 1, . . . , q

p+q−k∑
i=0

Gq−iAi+k−q, k = q + 1, . . . , q + p

. (9)

Once the ARFI process with parameters d and p is approximated by an AR
process of order m = p + q, we derive the expression for the process variance
using the theory of state space (SS) models Barnett and Seth (2015). The SS
formulation of the AR(m) process of Eq. (8) is given by

Zn+1 = BZn +KEn (10a)
Xn = CZn + En (10b)

where Zn = [Xn−1 · · ·Xn−m+1Xn−m]T is the m-dimensional state (unobserved)
process and the vectors K and C and the matrix B are defined as:

B =


B1 . . . Bm−1 Bm
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 ,K =


1
0
...
0


C =

[
B1 . . . Bm−1 Bm

]
(11)

The quantities in Eq. (11) are finally exploited to compute analytically the
process variance ΣX from the solution of the following discrete-time Lyapunov
equation Barnett and Seth (2015):

Ω = BΩBT + ΣEK
TK

ΣX = CΩCT + ΣE ,
(12)

from which the information storage is computed using Eq. (6).

2.3 Multiscale Information Storage
In this section we extend to multiple temporal scales the computation of infor-
mation storage for stochastic processes which have an ARFI representation. To
obtain the rescaled version of a stochastic process at the temporal scale defined
by the scale factor τ , the approach originally designed in Costa et al. (2002)
corresponds to simply take the average of the process over τ consecutive sam-
ples; this procedure has been refined later on Valencia et al. (2009); Faes et al.
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(2017a) by recognizing that it actually entails the two subsequent steps of fil-
tering the process with a lowpass filter with cutoff frequency fτ = 1/(2τ), and
then downsampling the filtered process using a decimation factor τ . According
to this refined method, we first apply a linear finite impulse response (FIR) filter
to the original process Xn obtaining the following filtered process:

X(r)
n = D(L)Xn , (13)

where r denotes the filter order and the filter coefficients D(L) =
r∑

k=0

DkL
k are

chosen to set up a lowpass FIR configuration with cutoff frequency 1/2τ . The
filtering step transforms the AR(m) process (which approximates the original
ARFI(p,d) process) into an ARMA(m,r) process with moving average (MA)
part determined by the filter coefficients:

B(L)X(r)
n = D(L)B(L)Xn = D(L)En . (14)

Then, we exploit the connection between ARMA processes and state space (SS)
processes Aoki and Havenner (1991) to evidence that the ARMA process (14)
can be expressed in SS form as:

Z
(r)
n+1 = B(r)Z(r)

n +K(r)E(r)
n (15a)

X(r)
n = C(r)Z(r)

n + E(r)
n (15b)

where Z(r)
n = [X

(r)
n−1 · · ·X

(r)
n−mEn−1 · · ·En−r]T is the (m + r)-dimensional state

process, E(r)
n = D0En is the SS innovation process, and the vectors K(r) and

C(r) and the matrix B(r) are given by:

C(r) =
[
B1 · · · BmD1 · · · Dr

]
K(r) =

[
1 01×(m−1) D−10 01×(r−1)

]
B(r) =


C(r)

Im−1 0(m−1)×(r+1)

01×(m+r)

0(r−1)×m Ir−1 01×(m+r) 0(r−1)×1


(16)

with Ia and 0a×b indicating the a-dimensional identity matrix and the null
matrix of dimension a × b. The parameters of the SS process are the three
quantities defined in (16) and the variance of the innovations ΣE(r) = D2

0ΣE ,
whereby Eq. (15) defines an SS(B(r), C(r),K(r),ΣE(r)) process.

The second step of the rescaling procedure is to downsample the filtered
process in order to complete the multiscale representation. To do this, we make
use of recent theoretical findings showing that the downsampled version of an
SS process has itself an SS representation Solo (2016); Barnett and Seth (2015).
Here, downsampling the SS process (15) with a factor τ yields the process
X

(τ)
n = X

(r)
nτ , which has the following SS representation:

Yn+1 = B(τ)Yn +Wn (17a)

X(τ)
n = C(τ)Yn + Vn (17b)
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where Vn and Wn are different white noise processes with variances ΣW and
ΣV and covariance ΣVW , respectively serving as innovations for the downsam-
pled process X(τ)

n and for the state process Yn. Thus, the process (17) is an
SS(B(τ), C(τ),ΣW ,ΣV ,ΣVW ) process whose parameters can be obtained as Solo
(2016); Barnett and Seth (2015):

B(τ) =
(
B(r)

)τ
C(τ) = C(r)

ΣV = ΣE(r)

ΣVW =
(
B(r)

)τ−1
K(r)ΣE(r)

ΣW (1) = ΣE(r)

(
K(r)

)T
K(r), τ = 1

ΣW (τ) = B(r)ΣW (τ − 1)
(
B(r)

)T
+ ΣE(r)

(
K(r)

)T
K(r), τ ≥= 2

(18)

Then, the SS(B(τ), C(τ),ΣW ,ΣV ,ΣVW ) process can be converted in a form
similar to that of Eq. (15) which evidences the innovations, yielding the SS
(B(τ), C(τ),K(τ),ΣE(τ)) process:

Z
(τ)
n+1 = B(τ)Z(τ)

n +K(τ)E(τ)
n (19a)

X(τ)
n = C(τ)Z(τ)

n + E(τ)
n , (19b)

which provides the SS form of the filtered and downsampled version of the
original ARFI(p, d) process. To move from (17) to (19) it is necessary to consider
a discrete algebraic Ricatti equation Solo (2016); Barnett and Seth (2015):

P = B(τ)P(B(τ))T + ΣW − (B(τ)PC(τ) + ΣVW )·

· (C(τ)P(C(τ))T + ΣV )−1(C(τ)P(B(τ))T+

+ (ΣVW )T ),

(20)

which leads, after solving for P, to the derivation of the two remaining param-
eters in (19):

ΣE(τ) = C(τ)P(C(τ))T + ΣV (21a)

K(τ) =
B(τ)P(C(τ))T + ΣVW

ΣV
. (21b)

Finally, the variance of the downsampled process can be computed analytically
solving a discrete-time Lyapunov equation similar to that of Eq. (12)

Ω = B(τ)Ω(B(τ))T + ΣE(τ)(K(τ))TK(τ) (22a)

ΣX(τ) = C(τ)Ω(C(τ))T + ΣE(τ) (22b)
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The derivations above lead to compute analytically the parameters of the SS
process of Eq. (19), which constitutes a rescaled version –derived through filter-
ing (Eq. (15) ) followed by downsampling (Eq. (17) )– of the AR approximation
(Eq. (8)) of the original ARFI process (Eq.(1)). Among the SS parameters, the
ones relevant for the computation of the information storage are the variance of
the downsampled process, ΣX(τ) , and the variance of the corresponding innova-
tions, ΣE(τ) . These variances can be combined in a similar way to that of Eq.
(6) to yield the expression of the information stored in the original process Xn

when it is observed at scale τ :

SX(τ) =
1

2
ln

ΣX(τ)

ΣE(τ)

. (23)

3 Numerical study
This section is devoted to assess the behavior of the proposed multiscale measure
of information storage in stochastic processes with known dynamics. First the
behavior is assessed by computing the value of SX(τ) for predetermined values
of the parameters influencing short term dynamics and long range correlations of
linear stochastic processes. Then the performance of the adopted estimators of
SX(τ) is studied from finite length realizations of such processes in a simulation
study.

3.1 Sensitivity Analysis
Here we investigate the properties of multiscale information storage by varying
the parameters which determine the dynamics of ARFI processes. These pa-
rameters are the differencing parameter d and the AR coefficients composing
the polynomial A(L) in Eq. (1), which are related to long range correlations
and short-term dynamics, respectively. Here, the strength of long-range corre-
lations was varied changing the parameter d in the set {0, 0.05, 0.4, 0.7} so as
to move from absent (d = 0) to long lasting mean reverting (d = 0.7) memory
effects. Moreover the AR coefficients were set in order to generate stochastic
oscillations with assigned frequency and spectral radius. This was achieved set-
ting pairs of complex conjugate poles in the complex plane as the roots of the
AR polynomial, where the modulus (ρ) or the phase (φ = 2πf , where f is the
frequency) of the pole was changed to reproduce varying strength and frequency
of the stochastic oscillations. Two configurations were considered: (a) an AR
polynomial of order p = 2, with two poles having fixed frequency f = 0.1 Hz
and varying modulus ρ ∈ {0, 0.5, 0.8, 0.9}; (b) an AR polynomial of order p = 4
with two pairs of poles, the first with fixed modulus ρ1 = 0.8 and frequency
f1 = 0.1 Hz, and the second with fixed modulus ρ2 = 0.8 and varying frequency
f2 ∈ {0.15, 0.2, 0.25, 0.3} Hz.

In each simulation, starting from the imposed theoretical values of the ARFI
parameters, the analysis was performed according to the procedures described
in Sect. II.B and II.C; the free parameters were set in accordance with the
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literature, indicating q = 50 as an appropriate value for truncating the ARFI
process to a finite order Bardet et al. (2003), and r = 48 as a viable choice
for the order of the lowpass filter used to implement the change of scale Faes
et al. (2017c). The results, obtained for time scales increasing from 1 to 50 (fτ
decreasing from 0.5 to 0.01 Hz), are reported in Figs. 1,2. In general, long range
correlations tend to bring information storage into the dynamic process, to an
extent proportional to the long memory of the process: indeed, for an assigned
time scale τ , SX(τ) tends to increase with the parameter d. This occurs both
at the original time scale (fτ = 0.5 Hz) and at longer time scales, regardless
of the type of the AR process (Fig.1 and Fig. 2); the only exception is the
presence of a strong stochastic oscillation (ρ = 0.9 in Fig. 1), where an increase
of d corresponds to a decrease of SX at the original time scale. This finding
has an implication for the evaluation of entropy measures on dynamic processes
in which short term dynamics coexist with long range correlations Granger and
Joyeux (1980); Xiong et al. (2017). In these situations one should remember
that, since long memory properties have an important effect on the dynamics,
such properties should be accounted for to make a proper evaluation of the
complexity of the observed process; if one is interested in short-term complexity
only Porta et al. (2012), long-range correlations should be removed prior to
entropy analysis Xiong et al. (2017).

Another general result is that the information storage tends to decrease at
decreasing fτ , as a result of the fact that lengthening the time scale corresponds
to removing regular oscillatory components and making the process more com-
plex (i.e., less predictable); at very long time scales the process is left with no
predictable dynamics and SX decays to zero. While the decrease of SX with
the time scale is monotonic in the absence of long range correlations (see the
curves with d = 0 in Figs. 1,2), the simultaneous presence of short and long
memory effects may complicate the multiscale behavior of information storage.
In fact, the ARFI process tends to store more information at intermediate time
scales (fτ ≈ 0.05 Hz) than at lower time scales when long range correlations
occur simultaneously with an appreciable stochastic oscillation (d = 0.4, 0.7
and ρ = 0.8, 0.9, Fig. 1), or with a mismatch between the frequencies of two
stochastic oscillations with the same amplitude (Fig. 2). These patterns were
not revealed by the utilization of multiscale complexity measures not account-
ing for long range correlations Faes et al. (2017c). Therefore, it seems that the
multiscale evaluation of complexity may benefit from the use of an approach
able to model dynamical effects occurring at different temporal scales such as
short and long range correlations.

We investigated also the effects of the approximation of the ARFI process
with a finite order AR process, obtained setting a fixed value for the parameter
q (see Eq. (7)). Fig. 3 reports the curves of multiscale information storage
obtained in four representative AR parameter settings when assessed by the
typical value q = 50 Bardet et al. (2003) (solid lines) and with the reduced
value q = 10 (dashed lines). Overall, we note that excessive truncation leads to
an underestimation of the information storage and to smooth of non-monotonic
trends of the storage with the time scale. The bias is more evident for higher

11



Figure 1: Theoretical profiles of multiscale information storage for simulated
ARFI processes with varying amplitude of stochastic oscillations. Plots depict
the information storage SX computed as a function of the cutoff frequency
fτ of the lowpass filter used to change the time scale for an ARFI process
characterized by two complex conjugate poles with fixed phase φ = 2π0.1 and
variable modulus ρ = 0 (a), ρ = 0.5 (b), ρ = 0.8 (c), and ρ = 0.9 (d), and
variable differencing parameter d = 0, 0.05, 0.4, 0.7.

values of the differencing parameter d at long time scales (lower fτ ). Therefore,
high values of the parameter q are recommended to obtain a good approximation
of the long memory properties of the observed process, so to limit the negative
bias of information storage and to preserve the ability to discern multiscale
patterns.

3.2 Finite Sample Performance
Here we describe the practical estimation of multiscale information storage com-
puted for the processes simulated as in Sect. III.A. The focus of this analysis was
on assessing the computational reliability of the proposed estimator in compari-
son with two alternative approaches for the multiscale assessment of dynamical
complexity: (i) linear multiscale analysis, based on performing pure AR identi-
fication without the modeling of long range correlations Faes et al. (2017c), and
(ii) refined multiscale entropy analysis, based on computing entropy measures
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Figure 2: Theoretical profiles of multiscale information storage for simulated
ARFI processes with varying frequency of stochastic oscillations. Plots depict
the information storage SX computed as a function of the cutoff frequency
fτ of the lowpass filter used to change the time scale for an ARFI process
characterized by a pair of complex conjugate poles with fixed modulus and
phase (ρ1 = 0.8, φ1 = 2π0.1), and another pair of complex conjugate poles with
fixed modulus ρ2 = 0.8 and variable phase φ2 = 2πf2, where f2 = 0.15 (a),
f2 = 0.2 (b), f2 = 0.25 (c), and f2 = 0.3 Hz (d), as well as variable differencing
parameter d = 0, 0.05, 0.4, 0.7.

after the practical implementation of rescaling executed through the application
of a lowpass filter followed by downsampling Valencia et al. (2009). The analysis
was performed for a representative example of the simulation described above,
where the AR polynomial was obtained from a pair of complex conjugate poles
with modulus ρ = 0.8 and frequency f = 0.1 Hz, and for values of the fractional
differencing parameter d ∈ {0, 0.4, 0.7}. In each analyzed case, 100 realizations
of the simulation were generated deriving the polynomial G(L) according to Eq.
(2), truncating it to q = 50 terms (Eq. (7)), and feeding the model of Eq. (8)
with independent samples drawn from the standard normal distribution. Then,
for each realization, multiscale information storage analysis was performed for
time scales τ = 1, . . . , 50 (fτ = 0.5, . . . , 0.01 Hz): (i) according to the procedure
described in Sect. II (ARFI identification), applying a FIR lowpass filter of order
r = 48; (ii) according to linear multiscale complexity analysis, i.e. following the
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procedure of Sect. II but after forcing d = 0 in Eq. (6) (AR identification); (iii)
according to refined multiscale complexity analysis, i.e. filtering the time series
with a 6th order Butterworth lowpass filter, resampling the filtered series with a
downsampling factor equal to τ , and computing Sample Entropy Richman and
Moorman (2000) on the downsampled time series with standard parameter set-
ting (embedding dimension m = 2, similarity tolerance r = 0.2ΣE(τ)). To allow
comparison, the complexity measures CX(τ) derived from the complexity analy-
ses (ii) and (iii) were converted into values of information storage exploiting the
equivalence SX(τ) = 0.5 ln 2πe− CX(τ) that holds for Gaussian processes. All
estimates were compared also with the exact patterns of multiscale information
storage obtained from the true values of the parameters.

First, we compared the distribution of SX(τ) estimated from realizations of
N = 300 samples with its theoretical values for the three estimation approaches.
The results depicted in Fig. 4 show that all approaches return a biased esti-
mate of the information storage, with the bias generally increasing with the
differencing parameter d and with the time scale τ . The bias is limited with
the proposed approach based on ARFI models, as the true values of SX is con-
tained within the dispersion interval of 10th − 90th percentiles of the estimates
(Fig. 4a,d,g). The linear multiscale method based on pure AR identification is
highly biased, in the presence of long range correlations (Fig. 4e,h), at inter-
mediate time scales (fτ ≤ 0.1 Hz) and becomes unreliable at longer time scales
(fτ ≤ 0.05 Hz), returning very low values of information storage. Nevertheless,
this method is highly reliable in the absence of long-range correlations (Fig.
4b), performing even better than the ARFI estimator which shows a certain
bias (Fig. 4a); this small bias can be related to the variability in the estima-
tion of the parameter d, which in turn shows non-negligible bias and variance
for these estimates obtained with N = 300 (the estimation improves for longer
time series, results not shown). On the other hand, the traditional approach
based on multiscale complexity analysis is highly unreliable at increasing time
scales, as the estimates of SX are strongly biased, display a variance that grows
dramatically with the time scale, and could not even be computed for fτ ≤ 0.1
Hz. These results document the necessity of the proposed approach based on
ARFI models to capture the dynamical complexity of processes showing both
stochastic oscillations and long memory properties.

Next, we studied the dependence of the estimates of information storage
on the sample size, repeating the analyses described above for time series of
different length in the range N ∈ {300, 512, 1024, 2048, 4096}. As shown in Fig.
5, a general expected result is that the bias of SX decreases at increasing the
time series length. The improvement is such that the measure based on ARFI
models becomes progressively more accurate at all time scales (Fig. 5a,d,g),
while it does not help to obtain a good approximation of SX at long time scales
for the measure based on AR models (Fig. 5e,h). As to the measure based on
multiscale complexity, the improvement brought by analyzing longer time series
is only slight and not always clear (Fig. 5c,f,i), confirming the unsuitability of
model-free approaches to assess dynamical complexity at long time scales.

14



4 Application to physiological processes
This section reports the application of multiscale information storage in the
field of cardiovascular and cardiorespiratory physiology. In this field, it is well
known that the dynamics of the cardiac, vascular and respiratory systems, typ-
ically assessed from the variability series of the heart period (HP), systolic ar-
terial pressure (SAP) and lung volume (LV), reflect the activity of physiological
mechanisms operating across multiple temporal scales. In particular, the as-
sessment of HP and SAP dynamics over temporal scales ranging from seconds
to a few minutes allows the detection of short-term cardiovascular regulation,
and is typically accomplished through complexity measures like approximate
entropy and Sample Entropy Pincus (1991); Richman and Moorman (2000), or
even using the information storage Faes et al. (2015); Widjaja et al. (2015).
In particular, two main physiological rhythms, associated to specific temporal
scales, are commonly detected in short-term heart rate variability Camm et al.
(1996); Shaffer and Ginsberg (2017): a low frequency oscillation (LF, ∼ 0.1
Hz), which is originated mainly by the sympathetic nervous system but may
incorporate also parasympathetic effects and blood pressure regulation via the
baroreflex Akselrod et al. (1981); Goldstein et al. (2011); and a high-frequency
oscillation (typically occurring within the range 0.15-0.4 Hz), which reflects
parasympathetic activity and occurs in synchrony with respiration according
to the mechanism known as respiratory sinus arrhythmia Eckberg and Eck-
berg (1982); Grossman and Taylor (2007). On the other hand, it is also known
that cardiovascular oscillations exhibit long-range correlations properties that
are manifested in scaling behavior and power law correlations which are com-
monly assessed using fractal techniques Ivanov et al. (1999); Bernaola-Galván
et al. (2001). These long memory properties are physiologically associated to
the so-called very low frequency cardiovascular oscillations (VLF, < 0.04 Hz),
which are originated by very slow-acting physiological processes driven by the
renin–angiotensin system Taylor et al. (1998) and possibly including physical
activity as well as thermoregulatory and endothelial influences on the heart
Shaffer and Ginsberg (2017); Kleiger et al. (2005).

Given this coexistence of short-term dynamics and long-range correlations,
the evaluation of the dynamical complexity of cardiovascular and respiratory
processes remains a challenge that can be thoroughly faced only employing
multiscale approaches. Here we investigate how the dynamical complexity of
HP, SAP and LV, assessed with our measure of information storage quantified
from ARFI processes, varies across multiple time scales reflecting separate but
simultaneously active physiological mechanisms. Moreover we address the issue
of quantifying the impact of long-range correlations, typically manifested in
short cardiovascular time series in terms of slow trends superimposed to the
short-term dynamics, on the values of information storage computed from short
cardiovascular recordings.
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4.1 Experimental Protocol and Measurement of Physio-
logical Time series

We consider the time series of HP, SAP and LV, interpreted as realizations
of the stochastic processes descriptive of the cardiac, vascular and respiratory
dynamics, measured in a group of 61 healthy subjects (17.5 ± 2.4 years old,
37 females) monitored in the resting supine position (SU) and in the upright
position (UP) reached through passive head-up tilt Javorka et al. (2017). The
acquired signals were the surface electrocardiogram (ECG), the finger arterial
blood pressure recorded noninvasively by the photoplethysmographic method,
and the respiration signal recorded through respiratory inductive plethysmog-
raphy. For each subject and experimental condition, the values of HP, SAP
and LV were measured on a beat-to-beat basis respectively as the sequences of
the temporal distances between consecutive R peaks of the ECG, the maximum
values of the arterial pressure waveform taken within the consecutively detected
heart periods, and the values of the respiratory signal sampled at the onset of
the consecutively detected heart periods. A detailed description of experimental
protocol and signal measurement is reported in Ref. Javorka et al. (2017).

The analysis was performed on segments of N = 300 consecutive points,
free of artifacts and deemed as weak-sense stationary through visual inspection,
extracted from the time series for each subject and condition. Three different
approaches were followed to compute multiscale information storage: (i) the
“eAR” approach, based on pure AR model identification, i.e. performing the
whole procedure described in Sect. II after forcing d=0 in Eq. (6); (ii) the
“eARd” approach, based on pure AR identification as in (i), but applied to the
filtered data X(f)

n = (1 − L)dXn, after estimating the parameter d from the
original time series; (iii) the “eARFI” approach, based on complete ARFI model
identification, i.e., following the whole procedure described in Sect. II with d
estimated from the original time series and considered in the computations. Pur-
suing these approaches we compare, respectively, (i) the traditional complexity
analysis where long-range correlations are neither removed nor modeled, (ii) the
analysis performed only on the short-term dynamics after removing long-range
correlations, and (iii) the complexity analysis performed by modeling the long
range correlations and considering them together with the short-term dynamics.
Such a comparison is meant to infer the role of long-range correlations vs. that
of short-term dynamics in contributing to the information storage and to its
variation between conditions.

The ARFI model fitting each individual time series was identified first es-
timating the fractional differencing parameter d using the Whittle estimator,
then filtering the time series with the fractional integration polynomial trun-
cated at a lag q = 50, and finally estimating the parameters of the polynomial
relevant to the short-term dynamics through least squares AR identification.
The AR model order p was selected as the minimum of the BIC figure of merit
Stoica and Selen (2004) in the range 2-16. Then, multiscale information stor-
age was computed implementing a FIR lowpass filter of order r = 48, for time
scales τ in the range (1,. . . ,400), which corresponds to lowpass cutoff frequencies
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fτ = (0.5, ..., 0.00125) Hz.
Here the effects of SU and UP conditions on the information storage profiles

are assessed at any assigned time scale by means of paired comparisons.

4.2 Results and Discussion
The results of the multiscale computation of information storage for the HP,
SAP and LV time series are depicted respectively in Figs. 6, 7, and 8, reporting
the distribution across subjects of the index SX (left column) computed follow-
ing the eAR (first row), eARd (second row) and eARFI (third row) estimation
approaches and evaluated as a function of the time scale in the two analyzed
physiological states (SU and UP). In each figure, results of the statistical anal-
ysis are also visualized (right column) reporting the mean and 95% confidence
intervals of the paired difference between the values of SX computed in the UP
and SU conditions; a statistically significant variation from SU to UP is de-
tectable at a given time scale if the confidence intervals do not encompass the
zero line.

Fig. 6 reports the results of multiscale information storage analysis for the
HP time series. Using the eAR method whereby long range correlations are
not modeled (Fig. 6a), at scale 1 (fτ = 0.5) the information stored in the
HP process is significantly higher in the UP condition compared with SU. This
reflects a widely known behavior of heart rate variability, whose complexity is
known to decrease with head-up tilt due to an activation of the sympathetic
nervous system which has a regularizing effect on the cardiac dynamics Porta
et al. (2017, 2007a). Higher values of SX during orthostatic stress are observed
also at increasing the time scale, and are detectable up to fτ ∼ 0.1 Hz (Fig.
6b), reflecting the results obtained in Ref. Faes et al. (2017c) where a lower
multiscale entropy is detected in the same data. Here we see also that the
tilt-induced increase of the information storage is present also when the slow
trends affecting HP, likely due to long-range correlations, are filtered out using
the eARd method (Fig.6c); in this case the increase of SX from SU to UP is
significant also for intermediate time scales (0.05 Hz < fτ < 0.1 Hz, Fig. 6d)).
This behavior is less evident when long range correlations are modeled, as SX
increases during UP only at scale 1, and is even reverted at longer time scales,
as SX decreases during UP for 0.01 Hz < fτ < 0.1 Hz (Fig.6e,f). This behavior,
documenting that the complexity of heart rate variability increases during tilt
if observed at long time scales, has been previously observed using multiscale
entropy Turianikova et al. (2011). Here, it becomes visible only modeling long-
range correlations through the eARFI approach and indicates that long-range
correlations are likely less important during head-up tilt. Thus, the utilization
of the modeling approach proposed in this study suggests that postural stress
augments the capability of HP to store information at low time scales but also
diminish such capability at longer time scales.

Fig. 7 reports the results of multiscale information storage analysis for the
SAP time series. According to the eAR method (Fig. 7a,b), moving from SU to
UP the index SX increases significantly at scale 1 (fτ = 0.5 Hz) and decreases
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significantly at scale 2 (fτ = 0.25 Hz), confirming in terms of information storage
the results reported in Ref. Faes et al. (2017c) based on a linear complexity
measure. These two opposite behaviors of the information stored in the SAP
process are here explained in terms of long-range correlations, which are removed
or explicitly considered respectively through detrending or through performing
ARFI identification. In fact, according to the eARd method (Fig. 7c,d), SX is
still significantly higher during UP when fτ = 0.5 Hz, but is not significantly
different from SU for any other value of fτ . On the contrary, according to the
eARFI method (Fig. 7e,f), SX does not show significant differences between
SU and UP when fτ = 0.5 Hz, but is significantly smaller when fτ = 0.25 Hz.
These results suggest that the higher capability of SAP to store information
during tilt observed at scale 1 is related exclusively to short-term dynamics,
while the lower storage capability observed at intermediate scales (fτ ∼ 0.25
Hz, where respiration-related components are suppressed) is driven by long-
range correlations. Thus, head-up tilt induces scale-dependent variations in the
complexity of arterial pressure, with higher complexity (lower SX) associated
with slow oscillations, and lower complexity (higher SX) associated to the effects
of respiration.

Fig. 8 reports the results of multiscale information storage analysis for the
RESP time series. In this case we find that, using all methods, at short time
scales the respiration process stores more information during UP than during
SU, while at longer time scales the amount of information stored in the pro-
cess does not change significantly with head-up tilt. This larger regularity of
the respiration dynamics and its multiscale behavior confirm previous findings
Valente et al. (2018); Faes et al. (2017c), further suggesting that long-range
correlations do not have significant influence on the complexity of respiratory
patterns. These results may be expected since respiration is usually strongly
evident in the so-called high-frequency band (> 0.15 Hz) Camm et al. (1996)
and is thus filtered out almost entirely for time scales ≥ 2.

To further elucidate the role played by long-range correlations in determin-
ing the information stored in the considered processes, we analyze the values
of the differencing parameter d computed in the various conditions using the
Whittle semi-parametric estimator Beran et al. (2012). Fig. 9 reports, for any
given process and condition, the individual values of d plotted for each of the
analyzed subjects, together with their 95th confidence intervals relevant to the
zero level (derived from the asymptotic statistic given by Eq. (6) of Ref. Leite
et al. (2013)). We find that the differencing parameter computed for the HP
series and for the SAP series is statistically significant (i.e., outside of the con-
fidence intervals) in a lower number of subjects in the UP condition (Fig. 9b,d)
compared with SU (Fig. 9a,c); this seems not to be the case for the RESP
time series (Fig. 9e vs. Fig. 9f). These results are confirmed by the appli-
cation of a Student t-test for paired data applied to the distributions of SX
computed during SU and during UP, which returns p−values lower than the
critical 0.05 level for HP and SAP (respectively p = 0.0037 and p = 0.0192),
while the distributions were not significantly different for RESP (p = 0.377).
These changes correspond to situations in which the eARFI method detects a
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statistically significant decrease of the information storage at intermediate/long
time scales (Fig. 6 and Fig. 7). This suggests that when the importance of
long-range correlations decreases for a time series (lower d), the slow dynamics
of the series become more complex (lower SX), supporting the argument that
long-range correlations play a regularizing role for the process dynamics Xiong
et al. (2017).

5 Conclusions
In this study, we have introduced a computationally reliable approach for the
practical calculation of the information stored in a dynamic process when the
process is observed at specific time scales. Quantification across time scales
of the information storage and of its complementary complexity measure, i.e.
the conditional entropy of the process measuring the new information produced
by the process at each moment in time, is performed in the present and many
other studies according to a specifically defined concept of “multiscale entropy”
Costa et al. (2002); Humeau-Heurtier (2015). Such concept envisages the mul-
tiscale analysis of a dynamic process as a procedure based on (i) filtering the
process to remove the fast temporal scales and highlight slower dynamics, and
(ii) computing the complexity of the filtered process to identify the presence
of repetitive patterns (low complexity) or unpredictable patterns (high com-
plexity). This procedure provides a multiscale representation that is somewhat
superficial in its theoretical and physical meaning, as it does not lead to a well-
defined entropy decomposition whereby the information of the process results
from the information of the process components relevant to different tempo-
ral scales. Nevertheless, such representation turns out to be very useful for
practical purposes. In fact, in physiology and neuroscience as well as in other
fields, quantification of multiscale entropy and information storage has rapidly
become an extremely popular way to assess the contributions of different regu-
latory mechanisms to the dynamics of the observed process, and to infer from
them the effects of physical, physiological or pathological alterations Costa et al.
(2003, 2005); Ahmed and Mandic (2011); Wang et al. (2013); Faes et al. (2017a);
Escudero et al. (2006); Catarino et al. (2011); Martina et al. (2011).

Thanks to its parametric formulation, the approach proposed in this work
inherits the computational reliability of linear multiscale entropy Faes et al.
(2017c), exploiting it for the assessment of regularity and – most importantly –
allowing the simultaneous description of short-term dynamics and long memory
properties. Our simulations show that the state space formulation implemented
here, though being restricted to the description of linear dynamics, outperforms
model-free multiscale complexity analysis Valencia et al. (2009) and, thanks to
the incorporation of long-range correlations, leads to a more reliable evaluation
of the information storage at long time scales if compared with linear multiscale
entropy Faes et al. (2017c). Since long-range correlations are a fundamental
aspect of multiscale dynamics, the present work opens the ways to a reliable
computation of the dynamical complexity of several natural and man-made pro-
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cesses where different mechanisms coexist, operating across multiple temporal
scales. Here, the application to cardiovascular dynamics led to unprecedented
physiological results, such as the observation that, at temporal scales compat-
ible with sympathetic neural activity, postural stress blunts the capability of
heart rate and arterial pressure variability to actively store information.

The main feature of the proposed framework for multiscale analysis is that it
allows, thanks to the parametric formulation, to compute exact values of infor-
mation storage based on the knowledge of the model parameters. On the other
hand, such a feature also relates to a main limitation of our approach, i.e. the
fact that our computations hold exactly only for linear Gaussian processes. In
fact, departures from linearity inducing non-Gaussian distributions may gener-
ate dynamics which can be described only partially by an ARFI model, and this
may lead to miss the multiscale properties to some extent. Even though the
suitability of parametric approaches and ARFI models has been widely demon-
strated in cardiovascular variability analysis Camm et al. (1996); Leite et al.
(2013); Almeida et al. (2017), future studies should compare linear model-based
and nonparametric model-free methods for multiscale analysis in order to clarify
the role played by nonlinear dynamics under different experimental conditions
and even in different applicative fields. Moreover, since a linear approach to
multiscale analysis evidently has a relation with the spectral representation of
the observed process, future studies should also define multiscale complexity
measures in the frequency domain, and compare them with the time domain
approach pursued by linear multiscale entropy and information storage in order
to understand similarities and compatibilities.

As regards possible generalizations of the approach proposed in this work,
the framework based on ARFI models may be extended to non-stationary set-
tings by exploring nonstationary ranges for the differencing parameter or im-
plementing time-varying formulations of AR or ARFI linear parametric models
Sharman and Friedlander (1984); Faes et al. (2009). Moreover, future develop-
ments should also focus on extending the formulations proposed in this work
to the multiscale representation of vector ARFI models, in order to attain a
complete decomposition across time scales of the other constitutive elements
of information processing in dynamical networks, i.e. information transfer and
information modification Lizier et al. (2012); Wibral et al. (2014). Employed to-
gether, these generalizations would allow a combined multivariate, time-variant
and multiscale assessment of the dynamics, opening the way for a truly complete
characterization of the properties of coupled dynamical systems.
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Figure 3: Dependence of the theoretical profiles of multiscale information stor-
age on the approximation of a simulated ARFI process with a finite-order AR
process. Plots depict the information storage SX computed as a function of
the cutoff frequency fτ of the lowpass filter used to change the time scale
for an ARFI process characterized by two complex conjugate poles with phase
φ = 2π0.1 and modulus ρ = 0 (a) or ρ = 0.8 (b), or by two pairs of complex con-
jugate poles with modulus ρ1 = ρ2 = 0.8 and phases φ1 = 2π0.1, φ2 = 2π0.15
(c) or φ1 = 2π0.1, φ2 = 2π0.3 (d). In each panel, results are plotted for values
of the differencing parameter d = 0, 0.4, 0.7 and two values for the truncation
parameter: q = 10 (dashed lines) and q = 50 (solid lines).
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Figure 4: Estimation of multiscale information storage over finite length realiza-
tions of simulated ARFI processes. Plots depict the theoretical values (red) and
the distributions (median and 10th − 90th percentiles (dispersion interval, D.I.)
over 100 realizations) of the information storage SX computed as a function of
the cutoff frequency fτ of the lowpass filter used to change the time scale for
an ARFI process characterized by two complex conjugate poles with modulus
and phase ρ = 0.8, φ = 2π0.1 for values of the differencing parameters d = 0
(a,b,c), d = 0.4 (d,e,f) and d = 0.7 (g,h,i), using the proposed ARFI method
(a,d,g), the linear multiscale AR method Faes et al. (2017c) (b,e,h), and the
refined multiscale complexity approach Valencia et al. (2009) (c,f,i).

27



Figure 5: Estimation of multiscale information storage as a function of the length
of simulated ARFI processes. Plots depict the theoretical values (red) and the
average estimated values (median over 100 realizations, other colors) of the
information storage SX computed as a function of the cutoff frequency fτ of the
lowpass filter used to change the time scale for an ARFI process characterized
by two complex conjugate poles with modulus and phase ρ = 0.8, φ = 2π0.1
for values of the differencing parameters d = 0 (a,b,c), d = 0.4 (d,e,f) and
d = 0.7 (g,h,i), using the proposed ARFI method (a,d,g), the linear multiscale
AR method Faes et al. (2017c) (b,e,h), and the refined multiscale complexity
approach Valencia et al. (2009) (c,f,i).
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Figure 6: Multiscale Information Storage for the heart period time series. Plots
report the confidence interval (C.I.) for the mean of the index of information
storage computed across subjects using the eAR approach (a), the eARd method
(c) and the eARFI method (e) as a function of the cutoff frequency of the
rescaling filter in the supine (SU) and upright (UP) body positions. For each
estimation method, the paired C.I. of UP−SU are also plotted in panels (b,d,f).
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Figure 7: Multiscale Information Storage for the systolic pressure time series.
Plots report the confidence interval (CI) for the mean of the index of information
storage computed across subjects using the eAR approach (a), the eARd method
(c) and the eARFI method (e) as a function of the cutoff frequency of the
rescaling filter in the supine (SU) and upright (UP) body positions. For each
estimation method, the paired CI of UP−SU are also plotted in panels (b,d,f).
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Figure 8: Multiscale Information Storage for the respiratory time series. Plots
report the confidence interval (CI) for the mean of the index of information
storage computed across subjects using the eAR approach (a), the eARd method
(c) and the eARFI method (e) as a function of the cutoff frequency of the
rescaling filter in the supine (SU) and upright (UP) body positions. For each
estimation method, the paired CI of UP−SU are also plotted in panels (b,d,f).
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Figure 9: Values of the differencing parameter d estimated for each subject (in-
dex 1,...,61) for the heart period (a,b), systolic pressure (c,d) and respiration
(e,f) time series in the supine (SU, a,c,e) and upright (UP, b,d,f) body posi-
tions. Each panel reports also the 95th confidence intervals (solid lines) of the
distribution of d computed around the zero level (dashed line).
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