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Chapter 1

Introduction

We will study the two workhorses of modern macro and financial economics, using
dynamic programming methods:

• the intertemporal allocation problem for the representative agent in a fi-
nance economy;

• the Ramsey model

in four different environments:

• discrete time and continuous time;

• deterministic and stochastic

methodology

• we use analytical methods

• some heuristic proofs

• and derive explicit equations whenever possible.
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1.1 A general overview

We will consider the following types of problems:

1.1.1 Discrete time deterministic models

In the space of the sequences {ut, xt}
∞
t=0, such that ut ∈ Rm where t 7→ ut and

xt ∈ R where t 7→ xt, choose a sequence {u∗
t , x

∗
t}

∞
t=0 that maximizes the sum

max
{u}

∞
∑

t=0

βtf(ut, xt)

subject to the sequence of budget constraints

xt+1 = g(xt, ut), t = 0, ..,∞

x0 given

where 0 < β ≡ 1
1+ρ

< 1, where ρ > 0.

By applying the principle of dynamic programming the first order nec-
essary conditions for this problem are given by the Hamilton-Jacobi-Bellman
(HJB) equation,

V (xt) = max
ut

{f(ut, xt) + βV (g(ut, xt))}

which is usually written as

V (x) = max
u

{f(u, x) + βV (g(u, x))} (1.1)

If an optimal control u∗ exists, it has the form u∗ = h(x), where h(x) is
called the policy function. If we substitute back in the HJB equation, we get
a functional equation

V (x) = f(h(x), x) + βV [g(h(x), x)].

Then solving the HJB equation means finding the function V (x) which solves
the functional equation. If we are able to determine V (x) (explicitly or numer-
ically) the we can also determine u∗

t = h(xt). If we substitute in the difference
equation, xt+1 = g(xt, h(xt)), starting at x0, the solution {u∗

t , x
∗
t}

∞
t=0 of the opti-

mal control problem.
Only in very rare cases we can find V (.) explicitly.
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1.1.2 Continuous time deterministic models

In the space of (piecewise-)continuous functions of time (u(t), x(t)) choose an
optimal flow {(u∗(t), x∗(t)) : t ∈ R+} such that u∗(t) maximizes the functional

V [u] =

∫ ∞

0

f(u(t), x(t))e−ρtdt

where ρ > 0, subject to the instantaneous budget constraint and the initial state

dx

dt
≡ ẋ(t) = g(x(t), u(t)), t ≥ 0

x(0) = x0 given

hold.

By applying the principle of the dynamic programming the first order condi-
tions for this problem are given by the HJB equation

ρV (x) = max
u

{

f(u, x) + V
′

(x)g(u, x)
}

.

Again, if an optimal control exists it is determined from the policy function u∗ =
h(x) and the HJB equation is equivalent to the functional differential equation 1

ρV (x) = f(h(x), x) + V
′

(x)g(h(x), x).

Again, if we can find V (x) we can also find h(x) and can determine the optimal
flow {(u∗(t), x∗(t)) : t ∈ R+} from solving the ordinary differential equation
ẋ = g(h(x), x) given x(0) = x0.

1.1.3 Discrete time stochastic models

The variables are random sequences {ut(ω), xt(ω)}∞t=0 which are adapted to
the filtration F = {Ft}

∞
t=0 over a probability space (Ω,F , P ). The domain of

the variables is ω ∈ N × (Ω,F , P, F), such that (t, ω) 7→ ut and xt ∈ R where
(t, ω) 7→ xt. Then ut ∈ R is a random variable.

An economic agent chooses a random sequence {u∗
t , x

∗
t}

∞
t=0 that maximizes the

sum

max
u

E0

[

∞
∑

t=0

βtf(ut, xt)

]

subject to the contingent sequence of budget constraints

xt+1 = g(xt, ut, ωt+1), t = 0..∞,

x0 given

1We use the convention ẋ = dx/dt, if x = x(t), is a time-derivative and V
′

(x) = dV/dx, if
V = V (x) is the derivative fr any other argument.
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where 0 < β < 1.
By applying the principle of the dynamic programming the first order condi-

tions of this problem are given by the HJB equation

V (xt) = max
u

{f(ut, xt) + βEt[V (g(ut, xt, ωt+1))]}

where Et[V (g(ut, xt, ωt+1))] = E[V (g(ut, xt, ωt+1))|Ft]. If it exists, the optimal
control can take the form u∗

t = f (Et[v(xt+1)]).

1.1.4 Continuous time stochastic models

The most common problem used in economics and finance is the following: in
the space of the flows {(u(ω, t), x(ω, t)) : ω = ω(t) ∈ (Ω,F , P,F(t)), t ∈ R+}
choose a flow u∗(t) that maximizes the functional

V [u] = E0

[∫ ∞

0

f(u(t), x(t))e−ρtdt

]

where u(t) = u(ω(t), t) and x(t) = x(ω(t), t) are It processes and ρ > 0, such that
the instantaneous budget constraint is represented by a stochastic differential
equation

dx = g(x(t), u(t), t)dt + σ(x(t), u(t))dB(t), t ∈ R+

x(0) = x0 given

where {dB(t) : t ∈ R+} is a Wiener process.

By applying the stochastic version of the principle of DP the HJB equation
is a second order functional equation

ρV (x) = max
u

{

f(u, x) + g(u, x)V
′

(x) +
1

2
(σ(u, x))2V

′′

(x)

}

.

1.2 References

First contribution: Bellman (1957)
Discrete time: Bertsekas (1976), Sargent (1987), Stokey and Lucas (1989),

Ljungqvist and Sargent (2000), Bertsekas (2005a), Bertsekas (2005b)
Continous time: Fleming and Rishel (1975), Kamien and Schwartz (1991),

Bertsekas (2005a), Bertsekas (2005b)



Part I

Deterministic Dynamic
Programming
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Chapter 2

Discrete Time

2.1 Optimal control and dynamic programming

General description of the optimal control problem:

• assume that time evolves in a discrete way, meaning that t ∈ {0, 1, 2, . . .},
that is t ∈ N0;

• the economy is described by two variables that evolve along time: a state
variable xt and a control variable, ut;

• we know the initial value of the state variable, x0, and the law of evolution
of the state, which is a function of the control variable (u(.)): xt+1 =
gt(xt, ut);

• we assume that there are m control variables, and that they belong to the
set ut ∈ U ⊂ Rm for any t ∈ N0,

• then, for any sequence of controls, u

u ≡ {u0, u1, . . . : ut ∈ U}

the economy can follow a large number of feasible paths,

x ≡ {x0, x1, . . .}, with xt+1 = gt(xt, ut), ut ∈ U

• however, if we have a criteria that allows for the evaluation of all feasible
paths

U(x0, x1, . . . , u0, u1, . . .)

• and if there is at least an optimal control u∗ = {u∗
0, u

∗
1, . . .} which maximizes

U ,

8
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• then there is at least an optimal path for the state variable

x∗ ≡ {x0, x
∗
1, . . .}

The most common dynamic optimization problems in economics and finance
have the following common assumptions

• timing: the state variable xt is usually a stock and is measured at the
beginning of period t and the control ut is usually a flow and is measured
in the end of period t;

• horizon: can be finite or is infinite (T = ∞). The second case is more
common;

• objective functional:
- there is an intertemporal utility function is additively separable, station-
ary, and involves time-discounting (impatience):

T
∑

t=0

βtf(ut, xt),

- 0 < β < 1, models impatience as β0 = 1 and limt→∞ βt = 0;
- f(.) is well behaved: it is continuous, continuously differentiable and
concave in (u, x);

• the economy is described by an autonomous difference equation

xt+1 = g(xt, ut)

where g(.) is autonomous, continuous, differentiable, concave. Then the DE
verifies the conditions for existence and uniqueness of solutions;

• the non-Ponzi game condition holds:

lim
t→∞

ϕtxt ≥ 0

holds, for a discount factor 0 < ϕ < 1;

• there may be some side conditions, v.g., xt ≥ 0, ut ≥ 0, which may produce
corner solutions. We will deal only with the case in which the solutions are
interior (or the domain of the variables is open).

These assumptions are formalized as optimal control problems:
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Definition 1. The simplest optimal control problem (OCP): Find {u∗
t , xt}

T
t=0:

which solves

max
{ut}T

t=0

T
∑

t=0

βtf(ut, xt)

such that ut ∈ U and
xt+1 = g(xt, ut)

for x0, xT given and T free.

Definition 2. The free terminal state optimal control problem (OCP):
Find {u∗

t , xt}
T−1
t=0 : which solves

max
{ut}T

t=0

T
∑

t=0

βtf(ut, xt)

such that ut ∈ U and
xt+1 = g(xt, ut)

for x0, T given and xT free. If T = ∞ we have the infinite horizon discounted
optimal control problem

Feasible candidate solutions: paths of {xt, ut} that verify

xt+1 = g(xt, ut), x0 given

for any choice of {ut ∈ U}T
t=0.

Methods for solving the OCP in the sense of obtaining necessary condi-
tions or necessary and sufficient conditions:

• method of Lagrange (for the case T finite)

• Pontriyagin’s maximum principle

• dynamic programming principle.

Necessary and sufficient optimality conditions Intuitive meaning:

• necessary conditions: assuming that we know the optimal solution, {u∗
t , x

∗
t}

which optimality conditions should the variables of the problem verify ?
(This means that they hold for every extremum feasible solutions);

• sufficient conditions: if the functions defining the problem, f(.) and g(.),
verify some conditions, then feasible paths verifying some optimality con-
ditions are solutions of the problem.

In general, if the behavioral functions f(.) and g(.) are well behaved (contin-
uous, continuously differentiable and concave) then necessary conditions are also
sufficient.
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2.1.1 Dynamic programming

The Principle of dynamic programming (Bellman (1957)):
an optimal trajectory has the following property:
for any given initial values of the state variable and for a given value of the state
and control variables in the beginning of any period, the control variables should
be chosen optimally for the remaining period, if we take the optimal values of
the state variables which result from the previous optimal decisions.

We next follow an heuristic approach for deriving necessary conditions for
problem 1, following the principle of DP.

Finite horizon Assume that we know a solution optimal control {u∗, x∗
t}

T
t=0.

Which properties should the optimal solution have ?

Definition 3. Definition: value function for time τ

VT−τ (xτ ) =
T
∑

t=τ

βt−τf(u∗
t , x

∗
t )

Proposition 1. Given an optimal solution to the optimal control problem, solu-
tion optimal control {u∗, x∗

t}
T
t=0, then it verifies Hamilton-Jacobi-Equation

VT−t(xt) = max
ut

{f(xt, ut) + βVT−t−1(xt+1)} (2.1)

Proof. If we know a solution for problem 1, then at time τ = 0, we have

VT (x0) =

T
∑

t=0

βtf(u∗
t , x

∗
t ) =

= max
{ut}T

t=0

T
∑

t=0

βtf(ut, xt) =

= max
{ut}T

t=0

(

f(x0, u0) + βf(x1, u1) + β2f(x2, u2) + . . .
)

=

= max
{ut}T

t=0

(

f(x0, u0) + β

T
∑

t=1

βt−1f(xt, ut)

)

=

= max
u0

(

f(x0, u0) + β max
{ut}T

t=1

T
∑

t=1

βt−1f(xt, ut)

)
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by the principle of dynamic programming. Then

VT (x0) = max
u0

{f(x0, u0) + βVT−1(x1)}

We can apply the same idea for the value function for any time 0 ≤ t ≤ T to get
equation (2.1), which holds for feasible solutions, i.e., verifying xt+1 = g(xt, ut)
and given x0.

Intuition: we transform the maximization of a functional into a recursive
two-period problem. We solve the control problem by solving the HJB equation.
To do this we have to find the sequence {VT , . . . , V0}, through the recursion

Vt+1(x) = max
u

{f(x, u) + βVt(g(x, u))} (2.2)

Infinite horizon For the infinite horizon discounted optimal control problem,
the limit function V = limj→∞ Vj is independent of j so the Hamilton Jacobi
Bellman equation becomes

V (x) = max
u

{f(x, u) + βV [g(x, u)]} = max
u

H(x, u)

Properties of the value function: it is usually difficult to get the properties
of V (.). In general continuity is assured but not differentiability (this is a subject
for advanced courses on DP, see Stokey and Lucas (1989)).

If some regularity conditions hold, we may determine the optimal control
through the optimality condition

∂H(x, u)

∂u
= 0

if H(.) is C2 then we get the policy function

u∗ = h(x)

which gives an optimal rule for changing the optimal control, given the state of
the economy. If we can determine (or prove that there exists such a relationship)
then we say that our problem is recursive.

In this case the HJB equation becomes a non-linear functional equation

V (x) = f(x, h(x)) + βV [g(x, h(x))].

Solving the HJB: means finding the value function V (x). Methods: ana-
lytical (in some cases exact) and mostly numerical (value function iteration).
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2.2 Applications

2.2.1 The cake eating problem

This is, possibly, the simplest optimal control problem. Assume that there is a
cake whose size at time t is denoted by Wt and a muncher who wants to eat in
T periods. The initial size of the cake is W0 = φ and WT = 0. The eater has a
psychological discount factor 0 < β < 1 and a static logarithmic utility function.
What is the optimal eating strategy ?

The problem is to find the optimal paths C∗ = {C∗
t }

T−1
t=0 and W ∗ = {W ∗

t }
T
t=0

that solve the problem

max
C

T
∑

t=0

βt ln(Ct), subject to Wt+1 = Wt − Ct, W0 = φ, WT = 0. (2.3)

In order to solve the cake eating problem by using dynamic programming we
have to determine a particular version of the HJB. In this case, we get

VT−t(Wt) = max
Ct

{ ln(Ct) + βVT−t−1(Wt+1)} , t = 0, 1, . . . , T − 1,

To solve it, we should take into account the restriction Wt+1 = Wt − Ct and the
initial and terminal conditions.

We get the optimal policy function for consumption from

∂

∂Ct

( ln(Ct) + βVT−t−1(Wt+1)) = 0

to get

C∗
t = Ct(Wt+1) =

(

βV
′

T−t−1(Wt+1)
)−1

Then the HJB equation becomes

VT−t(Wt) = ln(Ct(Wt+1)) + βVT−t−1(Wt+1) =, t = 0, 1, . . . , T − 1 (2.4)

which is a partial difference equation.
In order to solve it we make the conjecture that the solution is of the kind

VT−t(Wt) = AT−t +

(

1 − βT−t

1 − β

)

ln(Wt), t = 0, 1, . . . , T − 1

and apply the method of the undetermined coefficients. Then

C∗
t =

(

βV
′

T−t−1(Wt+1)
)−1

=

=

(

β
1 − βT−t−1

1 − β

)−1

Wt+1 =

=

(

1 − β

β − βT−t

)

Wt+1, t = 0, 1, . . . , T − 1
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which implies that, from Wt+1 = Wt − Ct that

Wt =

(

βt+1 − βT

βt − βT

)

Wt+1.

If we substitute back into the equation (2.4) we get an equivalent HJB equation

AT−t +

(

1 − βT−t

1 − β

)[

ln

(

βt+1 − βT

βt − βT

)

+ ln Wt+1

]

=

= ln

(

1 − βT−t

1 − β

)

+ ln Wt+1 + βAT−t−1 +

(

β − βT−t

1 − β

)

ln Wt+1

The terms in ln Wt+1 this indicates that our conjecture was right. In order to
determine the independent term, we should solve the difference equation for the
coefficient (which in this case is variable)

AT−t = βAT−t−1 + f(T − t)

which is a non-autonomous equation, because

f(T − t) ≡
1

1 − β
ln

[

(

β − βT−t

1 − βT−t

)1−βT−t
(

1 − β

β − βT−t

)1−β
]

.

We dont need to solve the equation, because, we already have the optimal policy
for consumption

C∗
t =

(

β
1 − βT−t

1 − β

)−1

Wt+1 =

=

(

β
1 − βT−t

1 − β

)−1(
βt+1 − βT

βt − βT

)−1

Wt =

=

(

1 − β

1 − βT−t

)

Wt.

2.2.2 Representative agent problem

Assumptions:

• there are T > 1 periods;

• consumers are homogeneous and have an additive intertemporal utility
functional;

• the instantaneous utility function is continuous, differentiable, increasing,
concave and is homogenous of degree n;
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• consumers have a stream of endowments, y ≡ {yt}
T
t=0, known with certainty;

• institutional setting: there are spot markets for the good and for a financial
asset. The financial asset is an entitlement to receive the dividend Dt at
the end of every period t. The spot prices are Pt and St for the good and
for the financial asset, respectively.

• Market timing, we assume that the good market opens in the beginning
and that the asset market opens at the end of every period.

The consumer’s problem

• choose a sequence of consumption {ct}
T
t=0 and of portfolios {θt}

T
t=1, which

is, in this simple case, the quantity of the asset bought at the beginning of
time t, in order to find

max
{ct,θt+1}T

t=0

T
∑

t=0

βtu(ct)

• subject to the sequence of budget constraints:

A0 + y0 = c0 + θ1S0

θ1(S1 + D1) + y1 = c1 + θ2S1

. . .

θt(St + Dt) + yt = ct + θt+1St

. . .

θT (ST + DT ) + yT = cT

where At is the stock of financial wealth (in real terms) at the beginning of
period t.

If we denote
At+1 = θt+1St

then the generic period budget constraint is

At+1 = yt − ct + RtAt, t = 0, . . . , T (2.5)

where the asset return is

Rt+1 = 1 + rt+1 =
St+1 + Dt+1

St

.
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Then the HJB equation is

V (At) = max
ct

{u(ct) + βV (At+1)} (2.6)

We can write the equation as

V (A) = max
c

{

u(c) + βV (Ã)
}

(2.7)

where Ã = y − c + RA then V (Ã) = V (y − c + RA).

Deriving an intertemporal arbitrage condition

The optimality condition is:

u
′

(c∗) = βV
′

(Ã)

if we could find the optimal policy function c∗ = h(A) and substitute it in the
HJB equation we would get

V (A) = u(h(A)) + βV (Ã∗), Ã∗ = y − h(A) + RA.

Using the Benveniste and Scheinkman (1979) trick , we differentiate for A to get

V
′

(A) = u
′

(c∗)
∂h

∂A
+ βV

′

(Ã∗)
∂Ã∗

∂A
=

= u
′

(c∗)
∂h

∂A
+ βV

′

(Ã∗)

(

R −
∂h

∂A

)

=

= βRV
′

(Ã∗) =

= Ru
′

(c∗)

from the optimality condition. If we shift both members of the last equation we
get

V
′

(Ã∗) = Ru
′

(c̃∗),

and, then
Ru

′

(c̃∗) = β−1u
′

(c∗).

Then, the optimal consumption path (we delete the * from now on) verifies the
arbitrage condition

u
′

(c) = βRu
′

(c̃).

In the literature the relationship is called the consumer’s intertemporal ar-
bitrage condition

u
′

(ct) = βu
′

(ct+1)Rt (2.8)
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Observe that

βRt =
1 + rt

1 + ρ

is the ratio between the market return and the psychological factor.
If the utility function is homogenous of degree η, it has the properties

u(c) = cηu(1)

u
′

(c) = cη−1u
′

(1)

the arbitrage condition is a linear difference equation

ct+1 = λct, λ ≡ (βRt)
1

1−η

Determining the optimal value function

In some cases, we can get an explicit solution for the HJB equation (2.7). We
have to determine jointly the optimal policy function h(A) and the optimal value
function V (A).

We will use the same non-constructive method to derive both functions: first,
we make a conjecture on the form of V (.) and then apply the method of the
undetermined coefficients.

Assumptions Let us assume that the utility function is logarithmic: u(c) =
ln(c) and assume for simplicity that y = 0.

In this case the optimality condition becomes

c∗ = [βV
′

(RA − c∗)]−1

Conjecture: let us assume that the value function is of the form

V (x) = B0 + B1 ln(A) (2.9)

where B0 and B1 are undetermined coefficients.
From this point on we apply the method of the undetermined coeffi-

cients: if the conjecture is right then we will get an equation without the inde-
pendent variable x, and which would allow us to determine the coefficients, B0

and B1, as functions of the parameters of the HJB equation.

Then

V
′

=
B1

A
.
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Applying this to the optimality condition, we get

c∗ = h(A) =
RA

1 + βB1

then

Ã∗ = RA − c∗ =

(

βB1

1 + βB1

)

RA

which is a linear function of A.

Substituting in the HJB equation, we get

B0 + B1 ln(A) = ln

(

RA

1 + βB1

)

+ β

[

B0 + B1 ln

(

βB1RA

1 + βB1

)]

= (2.10)

= ln

(

R

1 + βB1

)

+ ln(A) + β

[

B0 + B1 ln

(

βB1R

1 + βB1

)

+ ln(A)

]

The term in ln(A) can be eliminated if B1 = 1 + βB1, that is if

B1 =
1

1 − β

and equation (2.10) reduces to

B0(1 − β) = ln(R(1 − β)) +
β

1 − β
ln(Rβ)

which we can solve for B0 to get

B0 = (1 − β)−2 ln(RΘ), where Θ ≡ (1 − β)1−βββ

Finally, as our conjecture proved to be right, we can substitute B0 and B1 in
equation (2.9) the optimal value function and the optimal policy function are

V (A) = (1 − β)−1 ln
(

(RΘ)(1−β)−1

A
)

and
c∗ = (1 − β)RA

then optimal consumption is linear in financial wealth.
We can also determine the optimal asset accumulation, by noting that ct = c∗

and substituting in the period budget constraint

At+1 = βRtAt

If we assume that Rt = R then the solution for that DE is

At = (βR)tA0, t = 0, . . . ,∞
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and, therefore the optimal path for consumption is

ct = (1 − β)βtRt+1A0

Observe that the transversality condition holds,

lim
t→∞

R−tAt = lim
t→∞

A0β
t = 0

because 0 < β < 1.

Exercises

1. solve the HJB equation for the case in which y > 0

2. solve the HJB equation for the case in which y > 0 and the utility function
is CRRA: u(c) = c1−θ/(1 − θ) , for θ > 0;

3. try to solve the HJB equation for the case in which y = 0 and the utility
function is CARA: u(c) = B − e−βc/β, for β > 0

4. try to solve the HJB equation for the case in which y > 0 and the utility
function is CARA: u(c) = B − e−βc/β, for β > 0.
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2.2.3 The Ramsey problem

Find a sequence {ct, kt}
∞
t=0 which solves the following optimal control problem:

max
{c}∞t=0

∞
∑

t=0

βtu(ct)

subject to
kt+1 = f(kt) − ct + (1 − δ)kt

where 0 ≤ δ ≤ 1 given k0. Both the utility function and the production function
are neoclassical: continuous, differentiable, smooth and verify the Inada condi-
tions. These conditions would ensure that the necessary conditions for optimality
are also sufficient.

The HJB function is

V (k) = max
c

{

u(c) + βV (k
′

)
}

where k
′
= f(k) − c + (1 − δ)k.

The optimality condition is

u
′

(c) = βV
′

(k
′

(k))

If it allows us to find a policy function c = h(k) then the HJB becomes

V (k) = u[h(k)] + βV [f(k) − h(k) + (1 − δ)k] (2.11)

This equation has no explicit solution for generic utility and production function.
Even for explicit utility and production functions the HJB has not an explicit
solution. Next we present a benchmark case where we can find an explicit solution
for the HJB equation.

Benchmark case: Let u(c) = ln(c) and f(k) = Akα for 0 < α < 1, and
δ = 1.

Conjecture:
V (k) = B0 + B1 ln(k)

In this case the optimality condition is

h(k) =
Akα

1 + βB1

If we substitute in equation (2.11) we get

B0 + B1 ln(k) = ln

(

Akα

1 + βB1

)

+ β

[

B0 + B1 ln

(

AkαβB1

1 + βB1

)]

(2.12)
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Again we can eliminate the term in ln(k) by making

B1 =
α

1 − αβ

Thus, (2.12) changes to

B0(1 − β) = ln(A(1 − αβ)) +
αβ

1 − αβ
ln(αβA)

Finally the optimal value function and the optimal policy function are

V (A) = (1 − αβ)−1 ln
(

(AΘ)(1−β)−1

A
)

, Θ ≡ (1 − αβ)1−αβ(αβ)αβ

and
c∗ = (1 − αβ)Akα

Then the optimal capital accumulation is governed by the equation

kt+1 = αβAkα
t

This equation generates a forward path starting from the known initial capital
stock k0

{k0, αβAkα
0 , (αβA)α+1kα2

0 , . . . , (αβA)αt−1+1kαt

0 , . . .}

which converges to a stationary solution: k = (αβA)1/(1−α).



Chapter 3

Continuous Time

3.1 The dynamic programming principle and the

HJB equation

3.1.1 Simplest problem optimal control problem

In the space of the functions (u(t), x(t)) for t0 ≤ t ≤ t1 find functions (u∗(t), x∗(t))
which solve the problem:

max
u(t)

∫ t1

t0

f(t, x(t), u(t))dt

subject to

ẋ ≡
dx(t)

dt
= g(t, x(t), u(t))

given x(t0) = x0. We assume that t1 is know and that x(t1) is free.

The value function is, for the initial instant

V(t0, x0) =

∫ t1

t0

f(t, x∗, u∗)dt

and for the terminal time V(t1, x(t1)) = 0.

22
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Lemma 1. First order necessary conditions for optimality from the
Dynamic Programming principle
Let V ∈ C2(T, R). Then the value function which is associated to the optimal path
{(x∗(t), u∗(t) : t0 ≤ t ≤ t1} verifies the fundamental partial differential equation
or the Hamilton-Jacobi-Bellman equation

−Vt(t, x) = max
u

[f(t, x, u) + Vx(t, x)g(t, x, u)].

Proof. Consider the value function

V(t0, x0) = max
u

(
∫ t1

t0

f(t, x, u)dt

)

= max
u

(
∫ t0+∆t

t0

f(.)dt +

∫ t1

t0+∆t

f(.)dt

)

= (∆t > 0, small)

= max
u

t0 ≤ t ≤ t0 + ∆t













∫ t0+∆t

t0

f(.)dt + max
u

t0 + ∆t ≤ t ≤ t1

(
∫ t1

t0+∆t

f(.)dt

)













=

(from dynamic prog principle)

= max
u

t0 ≤ t ≤ t0 + ∆t

[
∫ t0+∆t

t0

f(.)dt + V(t0 + ∆t, x0 + ∆x)

]

=

(approximating x(t0 + ∆t) ≈ x0 + ∆x)

= max
u

t0 ≤ t ≤ t0 + ∆t

[f(t0, x0, u)∆t + V(t0, x0) + Vt(t0, x0)∆t + Vx(t0, x0)∆x + h.o.t]

if u ≈ constant and V ∈ C2(T, R)). Passing V(t0, x0) to the second member,
dividing by ∆t and taking the limit lim∆t→0 we get, for every t ∈ [t0, t1],

0 = max
u

[f(t, x, u) + Vt(t, x) + Vx(t, x)ẋ].
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The policy function is now u∗ = h(t, x). If we substitute in the HJB equation
then we get a first order partial differental equation

−Vt(t, x) = f(t, x, h(t, x)) + Vx(t, x)g(t, x, h(t, x))].

Though the differentiability of V is assured for the functions f and g which are
common in the economics literature, we can get explicit solutions, for V (.) and
for h(.), only in very rare cases. Proving that V is differentiable, even in the
case in which we cannot determine it explicitly is hard and requires proficiency
in Functional Analysis.

Relationship with the Pontriyagin’s principle:

(1) If we apply the transformation λ(t) = Vx(t, x(t)) we get the following rela-
tionship with the Hamiltonian function which is used by the Pontriyagin’s
principle: −Vt(t, x) = H∗(t, x, λ);

(2) If V is sufficienty differentiable, we can use the principle of DP to get
necessary conditions for optimality similar to the Pontriyagin principle.
The maximum condition is

fu + Vxgu = fu + λgu = 0

and the canonical equations are: as λ̇ = ∂Vx

∂t
= Vxt + Vxxg and differenting

the HJB as regards x, implies −Vtx = fx + Vxxg + Vxgx, therefore the
canonical equation results

−λ̇ = fx + λgx.

(3) Differently from the Pontryiagin’s principle which defines a dynamic system
of the form {T, R2, ϕt = (q(t), x(t))}, the principle of dynamic programming
defines a dynamic system as {(T, R), R, vt,x = V(t, x))}. That is, if defines
a recursive mechanism in all or in a subset of the state space.
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3.1.2 Infinite horizon discounted problem

Lemma 2. First order necessary conditions for optimality from the Dy-
namic Programming principle
Let V ∈ C2(T, R). Then the value function associated to the optimal path {(x∗(t), u∗(t) :
t0 ≤ t < +∞} verifies the fundamental non-linear ODE called the Hamilton-
Jacobi-Bellman equation

ρV (x) = max
u

[f(x, u) + V ′(x)g(x, u)].

Proof. Now, we have

V(t0, x0) = max
u

(
∫ +∞

t0

f(x, u)e−ρtdt

)

=

= e−ρt0 max
u

(
∫ +∞

t0

f(x, u)e−ρ(t−t0)dt

)

=

= e−ρt0V (x0) (3.1)

where V (.) is independent from t0 and only depends on x0. We can do

V (x0) = max
u

(
∫ +∞

0

f(x, u)e−ρtdt

)

.

If we let, for every (t, x) V(t, x) = e−ρtV (x) and if we substitute the derivatives
in the HJB equation for the simplest problem, we get the new HJB.

Observations:

• if we determine the policy function u∗ = h(x) and substitute in the HJB
equation, we see that the new HJB equation is a non-linear ODE

ρV (x) = f(x, h(x)) + V ′(x)g(x, h(x))].

• Differently from the solution from the Pontriyagin’s principle, the HJB de-
fines a recursion over x. Intuitively it generates a rule which says : if we
observe the state x the optimal policy is h(x) in such a way that the initial
value problem should be equal to the present value of the variation of the
state.

• It is still very rare to find explicit solutions for V (x). There is a literature on
how to compute it numerically, which is related to the numerical solution of
ODE’s and not with approximating value functions as in the discrete time
case.



26

3.1.3 Bibliography

See Kamien and Schwartz (1991).

3.2 Applications

3.2.1 The cake eating problem

The problem is to find the optimal flows of cake munching C∗ = {C∗(t) : t ∈
[0, T ]} and of the size of the cake W ∗ = {W ∗(t) : t ∈ [0, T ]} such that

max
C

∫ T

0

ln(C(t))e−ρtdt, subject to Ẇ = −C, t ∈ (0, T ), W (0) = φ W (T ) = 0

(3.2)
where φ > 0 is given. The problem can be equivalently written as a calculus of
variations problem,

max
W

∫ T

0

ln(−Ẇ (t))e−ρtdt, subject to W (0) = φ W (T ) = 0

Consider again problem (3.2). Now, we want to solve it by using the principle
of the dynamic programming. In order to do it, we have to determine the value
function V = V (t, W ) which solves the HJB equation

−
∂V

∂t
= max

C

{

e−ρt ln(C) − C
∂V

∂W

}

The optimal policy for consumption is

C∗(t) = e−ρt

(

∂V

∂W

)−1

If we substitute back into the HJB equation we get the partial differential equa-
tion

−eρt ∂V

∂t
= ln

[

e−ρt

(

∂V

∂W

)−1
]

− 1

To solve it, let us use the method of undetermined coefficients by conjecturing
that the solution is of the type

V (t, W ) = e−ρt(a + b ln W )

where a and b are constants to be determined, if our conjecture is right. With
this function, the HJB equation comes

ρ(a + b ln W ) = ln(W ) − ln b − 1
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if we set b = 1/ρ we eliminate the term in ln W and get

a = −(1 − ln(ρ))/ρ.

Therefore, solution for the HJB equation is

V (t, W ) =
−1 + ln(ρ) + ln W

ρ
e−ρt

and the optimal policy for consumption is

C∗(t) = ρW (t).

3.2.2 The representative agent problem

Assumptions:

• T = R+, i.e., decisions and transactions take place continuously in time,
and variables are represented by flows or trajectories x ≡ {x(t), t ∈ R+}
where x(t) is a mapping t 7→ x(t);

• deterministic environment: the agents have perfect information over the
flow of endowments y ≡ {y(t), t ∈ R+} and the relevant prices;

• agents are homogeneous: they have the same endowments and preferences;

• preferences over flows of consumption are evaluated by the intertemporal
utility functional

V [c] =

∫ ∞

0

u(c(t))e−ρtdt

which displays impatience (the discount factor e−ρt ∈ (0, 1)), stationarity
(u(.) is not directly dependent on time) and time independence and the
instantaneous utility function (u(.)) is continuous, differentiable, increasing
and concave;

• observe that mathematically the intertemporal utility function is in fact a
functional, or a generalized function, i.e., a mapping whose argument is a
function (not a number as in the case of functions). Therefore, solving the
consumption problem means finding an optimal function. In particular, it
consists in finding an optimal trajectory for consumption;

• institutional setting: there are spot real and financial markets that are
continuously open. The price P (t) clear the real market instantaneously.
There is an asset market in which a single asset is traded which has the
price S(t) and pays a dividend V (t).
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Derivation of the budget constraint:

The consumer chooses the number of assets θ(t). If we consider a small
increment in time h and assume that the flow variables are constant in the interval
then

S(t + h)θ(t + h) = θ(t)S(t) + θ(t)D(t)h + P (t)(y(t) − c(t))h.

Define A(t) = S(t)θ(t) in nominal terms.
The budget constraint is equivalently

A(t + h) − A(t) = i(t)A(t)h + P (t)(y(t) − c(t))h

where i(t) = D(t)
S(t)

is the nominal rate of return. If we divide by h and take the
limit when h → 0 then

lim
h→0

A(t + h) − A(t)

h
≡

dA(t)

dt
= i(t)A(t) + P (t)(y(t) − c(t)).

If we define real wealth and the real interest rate as a(t) ≡ A(t)
P (t)

and r(t) =

i(t) + Ṗ
P (t)

, then we get the instantaneous budget constraint

ȧ(t) = r(t)a(t) + y(t) − c(t) (3.3)

where we assume that a(0) = a0 given.

Define the human wealth, in real terms, as

h(t) =

∫ ∞

t

e−
R s

t
r(τ)dτy(s)ds

as from the Leibniz’s rule

ḣ(t) ≡
dh(t)

dt
= r(t)

∫ ∞

t

e−
R s
t

r(τ)dτy(s)ds − y(t) = r(t)h(t) − y(t)

then total wealth at time t is

w(t) = a(t) + h(t)

and we may represent the budget constraint as a function of w(.)

ẇ = ȧ(t) + ḣ(t) =

= r(t)w(t) − c(t)

The instantaneous budget constraint should not be confused with the in-
tertemporal budget constraint. Assume the solvalibity condition holds at
time t = 0

lim
t→∞

e−
R t
0 r(τ)dτa(t) = 0.
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Then it is equivalent to the following intertemporal budget constraint,

w(0) =

∫ ∞

0

e−
R t

0
r(τ)dτ c(t)dt,

the present value of the flow of consumption should be equal to the initial total
wealth.

To prove this, solve the instantaneous budhet constraint (3.3) to get

a(t) = a(0)e
R t

0
r(τ)dτ +

∫ t

0

e
R s

0
r(τ)dτy(s) − c(s)ds

multiply by e−
R t

0
r(τ)dτ , pass to the limit t → ∞, apply the solvability condition

and use the definition of human wealth.

Therefore the intertemporal optimization problem for the represen-
tative agent is to find (c∗(t), w∗(t)) for t ∈ R+ which maximizes

V [c] =

∫ +∞

0

u(c(t))e−ρtdt

subject to the instantaneous budget constraint

ẇ(t) = r(t)w(t) − c(t)

given w(0) = w0.

Solving the consumer problem using DP.

The HJB equation is

ρV (w) = max
c

{

u(c) + V
′

(w)(rw − c)
}

where w = w(t), c = c(t), r = r(t).

We assume that the utility function is homogeneous of degree η. Therefore it
has the properties:

u(c) = cηu(1)

u
′

(c) = cη−1u
′

(1)

The optimality condition is:

u
′

(c∗) = V
′

(w)
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then

c∗ =

(

V
′
(w)

u′(1)

)

1
η−1

substituting in the HJB equation we get the ODE, defined on V (w),

ρV (w) = rwV
′

(w) + (u(1) − u
′

(1))

(

V
′
(w)

u′(1)

)

η
η−1

In order to solve it, we guess that its solution is of the form:

V (w) = Bwη

if we substitute in the HJB equation, we get

ρBwη = ηrBwη + (u(1) − u
′

(1))

(

ηBw

u′(1)

)η

.

Then we can eliminate the term in wη and solve for B to get

B =

[(

u(1) − u
′
(1)

ρ − ηr

)(

η

u′(1)

)η]
1

1−η

.

Then, as B is a function of r = r(t), we determine explicitly the value function

V (w(t)) = Bw(t)η =

[(

u(1) − u
′
(1)

ρ − ηr(t)

)(

η

u′(1)

)η]
1

1−η

w(t)η

as a function of total wealth.

Observation: this is one known case in which we can solve explicitly the
HJB equation as it is a linear function on the state variable, w and the objective
function u(c) is homogeneous.

The optimal policy function can also be determined explicitly

c∗(t) =

(

ηB(t)

u′(1)

)
1

η−1

w(t) ≡ π(t)w(t) (3.4)

as it sets the control as a function of the state variable, and not as depending on
the path of the co-state and state variables as in the Pontryiagin’s case, sometimes
this solution is called robust feedback control.

Substituting in the budget constraint, we get the optimal wealth accumulation

w∗(t) = w0e
R t
0 r(s)−π(s)ds (3.5)

which is a solution of

ẇ∗ = r(t)w∗(t) − c∗(t) = (r(t) − π(t))w∗(t)

Conclusion: the optimal paths for consumption and wealth accumulation (c∗(t), w∗(t))
are given by equations (3.4) and (3.5) for any t ∈ R+.
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3.2.3 The Ramsey model

This is a problem for a centralized planner which chooses the optimal consumption
flow c(t) in order to maximize the intertemporal utility functional

max V [c] =

∫ ∞

0

u(c)e−ρtdt

where ρ > 0 subject to

k̇(t) = f(k(t)) − c(t)

k(0) = k0 given

The HJB equation is

ρV (k) = max
c

{u(c) + V
′

(k)(f(k) − c)}

Benchmark assumptions: u(c) = c1−σ

1−σ
where σ > 0 and f(k) = Akα where

0 < α < 1.

The HJB equation is

ρV (k) = max
c

{

c1−σ

1 − σ
+ V

′

(k) (Akα − c)

}

(3.6)

the optimality condition is

c∗ =
(

V
′

(k)
)− 1

σ

after substituting in equation (3.6) we get

ρV (k) = V
′

(k)

(

σ

1 − σ
V

′

(k)−
1
σ + Akα

)

(3.7)

In some particular cases we can get explicit solutions, but in general we don’t.

Particular case: α = σ Equation (3.7) becomes

ρV (k) = V
′

(k)

(

σ

1 − σ
V

′

(k)−
1
σ + Akσ

)

(3.8)

Let us conjecture that the solution is

V (k) = B0 + B1k
1−σ

where B0 and B1 are undetermined coefficients. Then V
′
(k) = B1(1 − σ)k−σ.
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If we substitute in equation (3.8) we get

ρ(B0 + B1k
1−σ) = B1

[

σ ((1 − σ)B1)
− 1

σ k1−σ + (1 − σ)A
]

(3.9)

Equation (3.9) is true only if

B0 =
A(1 − σ)

ρ
B1 (3.10)

B1 =

(

1

1 − σ

)(

σ

ρ

)σ

. (3.11)

Then the following function is indeed a solution of the HJB equation in this
particular case

V (k) =

(

σ

ρ

)σ (
A

ρ
+

1

1 − σ
k1−σ

)

The optimal policy function is

c = h(k) =
ρ

σ
k

We can determine the optimal flow of consumption and capital (c∗(t), k∗(t))
by substituting c(t) = ρ

σ
k(t) in the admissibility conditions to get the ODE

k̇∗ = Ak∗(t)α −
ρ

σ
k∗(t)

for given k(0) = k0. This a Bernoulli ODE which has an explicit solution as

k∗(t) =

[

Aρ

σ
+

(

k
1

1−σ

0 −
Aρ

σ

)

e−
(1−σ)ρ

σ
t

]
1

1−σ

, t = 0, . . . ,∞

and
c∗(t) =

ρ

σ
k∗(t), t = 0, . . . ,∞.



Part II

Stochastic Dynamic
Programming
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Chapter 4

Discrete Time

4.1 Introduction to stochastic processes

Assume that we have T periods: T = {0, 1, . . . , T}, and consider an underlying
probability space (Ω,F , P ).

We introduce the family of random variables X t ≡ {Xτ : τ = 0, 1, . . . , T}
where Xt = X(wt) where wt ∈ Ft. The information available at period t ∈ T will
be represented by the σ−algebra Ft ⊂ F .

4.1.1 Information structure

Consider a state space with a finite number of states of nature Ω = {ω1, . . . , ωN}.
Let the information, at time T be represented by the random sequence of

events wt = {wτ , τ = 0, 1, . . . t} where wt ∈ {At} and {At} is a subset of Ω :

• at t = 0 any state of nature ω ∈ Ω is possible, w0 = Ω;

• at t = T the true state of nature is known, {AT} ∈ {{ω1}, . . . , {ωN}}, that
is where ωT ∈ Ω. This means that there is a correspondence between the
number of information sequences and the number of states of nature N ;

• at 0 < t < T some states of nature can be discarded, which means that the
amount of information is increasing, that is, the true state of nature will
belong to a subset with a smaller number of elements, as time passes by.
Formally, A0 ⊇ A1 ⊇ . . . ⊇ AT , that is

At+1 ⊆ At, ∀t ∈ T.

If we consider the set of all the states of nature in each period, we may set wt ∈
Pt where {Pt}

T
t=0 is a sequence of partitions over Ω. That is, we may establish a

(one to one) correspondence between the sequence {wt}
T
0 of information and the

sequences of partitions, P0,P1, . . . ,PT , such that

34
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b

Ω

b {w1, w2, w3, w4}
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Figure 4.1: Information tree
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Figure 4.2: Information realization through time
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• P0 = Ω;

• the elements of Pt are mutually disjoint and are equivalent to the union of
elements of Pt+1;

• PT = {{ω1}, {ω2}, . . . , {ωN}}.

Example (vd Pliska (1997)) Let N = 8, T = 3, a admissible sequence of
partitions is:

P0 = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}

P1 = {{ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}}

P2 = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8}}

P3 = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}, {ω6}, {ω7}, {ω8}}

We may understand those partitions as sequences of two states of nature, a
good state u and a bad state d. Then: {ω1} = uuu, {ω2} = uud, {ω3} =
udu, {ω4} = udd, {ω5} = duu, {ω6} = dud, {ω7} = ddu and {ω8} = ddd,
{ω1, ω2} = uu, {ω3, ω4} = ud, {ω5, ω6} = du, {ω7, ω8} = dd, {ω1, ω2, ω3, ω4} = u
and {ω5, ω6, ω7, ω8} = d and {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8} = {u, d}. We can write
all the potential sequences of information as a sequence os sets of events

P0 = w0

P1 = {w1,1, w1,2}

P2 = {w2,1, w2,2, w2,3, w2,4}

P3 = {w3,1, w3,2, w3,3, w3,4, w3,5, w3,6, w3,7, w3,8}

�

A realization corresponds to the occurrence of a particular sequence of history
wt = {w0, w1, . . . , wt}, where wt = (wt,1, . . . , wt,Nt

) and Nt is the number of
elements of Pt .

Given a partition, we may obtain several different histories, which correspond
to building as as many subsets of Ω as possible, by means of set operations (com-
plements, unions and intersections) and build a σ−algebra. There is, therefore, a
correspondence between sequences of partitions over Ω and sequences σ−algebras
Ft ⊂ F .

The information available at time t ∈ T will be represented by Ft and by a
filtration, for the sequence of periods t = 0, 1, . . . , T .
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Definition 4. A filtration is a sequence of σ−algebras {Ft}

F = {F0,F1, . . . ,FT}.

A filtration is non-anticipating if

• F0 = {∅, Ω},

• Fs ⊆ Ft, if s ≤ t,

• FT = F .

Intuition:
(1) Initially we have no information (besides knowing that an event is observable
or not);
(2) the information increases with time;
(3) at the terminal moment we not only observe the true state of nature, but also
know the past history.

Example Taking the last example, we have:

F0 = {∅, Ω},

F1 = {∅, Ω, {ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}},

F2 = {∅, Ω, {ω1, ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8},

{ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}, {ω1, ω2, ω5, ω6},

{ω1, ω2, ω7, ω8}, {ω3, ω4, ω5, ω6}, {ω3, ω4, ω7, ω8},

{ω1, ω2, ω3, ω4, ω5, ω6}, {ω1, ω2, ω3, ω4, ω7, ω8},

{ω1, ω2, ω5, ω6, ω7, ω8}, {ω3, ω4, ω5, ω6, ω7, ω8}}

�

Then Ft is the set of all the histories up until time t,

Ft = {{wτ}
t
τ=0 : wτ ∈ Pτ , 0 ≤ τ ≤ t}

Probabilities can be determined from two perspectives:

• for events y, occuring in a moment in time, wy = y P (wt = y) or prob-
abilities associated to sequences of events wt = yt means {w0 = y0, w1 =
y1, . . . , wt = yt}, P (wt = yt) ;

• with information taken at time t = 0, i.e. Ω; or associated to a particular
history wt ∈ Ft.
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Unconditional probabilities, πt
0(y) denotes the probability that the event

y occurs at time t, assuming the information at time t = 0. If we consider the
information available at time t the probability of wt = y, at time t, is

πt
0(y) = P (wt = y)

where wt ∈ Pt ⊂ Ft. As a probability, we have

0 ≤ πt
0(.) ≤ 1.

From the properties of Pt ⊂ Ft, as the finer partition of Ft, we readily see that

πt
0(Pt) = P (∪Nt

s=1wt,s) =

Nt
∑

s=1

P (wt = wt,s) =

Nt
∑

s=1

πt
0(wt,s) = 1

We denote by πt
0(w

t) the probability that history wt ∈ Ft occurs. In this case,
we have πT

0 (FT ) = 1,
Conditional probabilities, πt

s(y) denotes the probability that the event y
occurs at time t conditional on the information available at time s < t

πt
s(y) = P (wt = y|Fs), s < t

where wt ∈ Pt ⊂ Ft such that

0 ≤ πt
s(.) ≤ 1.

In particular, the conditional probability that we will have event yt at time t,
given a sequence sequence of events yt−1, . . . , y0 from time t = 0 until time t − 1
is denoted as

πt
t−1(y) = P (wt = yt|wt−1 = yt−1, . . . w0 = w0),

In order to understand the meaning of the conditional probability, consider
a particular case in which it is conditional on the information for a particular
previous moment s < t. Let πt

s(y|z) be the probability that event y occurs at
time t given that event z has occured at time s < t,

πt
s(y|z) = P (wt = y|ws = z)

Let us denote Py
t and Pz

s the partitions of Pt and Ps which contain, respectively,
y and z. Then, clearly πt

s(y|z) = 0 if Py
t ∩ Pz

s = ∅.

Let us assume that there are at t, nt
s(z) subsets of Pt such that ∪nt

s(z)
j=1 wt,s = z.

Then

πt
s(z|z) = P

(

∪nt
s(z)

j=1 wt,s

∣

∣

∣
ws = z) =

nt
s(z)
∑

j=1

P (wt = wt,j|ws = z) =

nt
s(z)
∑

j=1

πt
s(wt,j) = 1
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Alternatively, if we use the indicator function 1t
s(z)

1t
s(z) =

{

1, if Py
t ⊂ Pz

s

0, if Py
t * Pz

s

we can write

πt
s(z|z) =

Nt
∑

j=1

P (wt = wt,j|ws = z)1t
s(z) =

Nt
∑

j=1

πt
s(wt,j)1

t
s(z) = 1

This means that πt
s(y|z) is a probability measure starting from a particular node

ws = z.

There is a relationship between unconditional and conditional prob-
abilities. Consider the unconditional probabilities, πt

0(wt) = P (wt = y) and
πt−1

0 (wt−1) = P (wt−1 = z). We assume that the following relationship between
unconditional and conditional probabilities hold 1

πt
0(y) = πt

t−1(y|z)πt−1
0 (z).

For sequences of events we have the following relationship between conditional
and unconditional probabilities,if we take information up to time s = t − 1

P (wt = yt|wt−1, = yt−1, . . . , w0) =

P (wt = yt, wt−1, = yt−1, . . . , w0)

P (wt−1, = yt−1, . . . , w0)
(4.1)

or
πt

t−1(yt|y
t−1) = πt

0(y
t)/πt−1

0 (yt−1)

Therefore, if we consider a sequence of events starting from t = 0, {wτ}
t
τ=0, we

have associated a sequence of conditional probabilities, or transition probabilities

{π1
0, π

2
1, . . . , π

t
t−1}

where

πt
0 =

t
∏

s=1

πt
s−1

1This is a consequence of the Bayes’ rule.
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4.1.2 Stochastic processes

Definition 5. A stochastic process is a function X : T × Ω → R. For every
ω ∈ Ω the mapping t 7→ Xt(ω) defines a trajectory and for every t ∈ T the
mapping ω 7→ X(t, ω) defines a random variable.

A common representation is the sequence X = {X0, X1, . . . , XT} = {Xt : t =
0, 1, . . . , T}, which is a sequence of random variables.

Definition 6. The stochastic process X t = {Xτ : τ = 0, 1, . . . , t} is an adapted
process as regards the filtration F = {Ft : t = 0, 1, . . . , T} if the random variable
Xt is measurable as regards Ft, for all t ∈ T. That is

Xt = X(wt) wt ∈ Ft

that is Xt = (X1, . . .XNt
) = (X(w1), . . .X(wNt

))

Example: In the previous example, the stochastic process

X(ω) =

{

6, ω ∈ {ω1, ω2, ω3, ω4}
7, ω ∈ {ω5, ω6, ω7, ω8}

is adapted to the filtration F and is measurable as regards F1, but the process

Y (ω) =

{

6, ω ∈ {ω1, ω3, ω5, ω7}
7, ω ∈ {ω2, ω4, ω6, ω8}

is not.

Example: Again, in the previous example, a stochastic process adapted to
the filtration, has the following possible realizations

X0 = X(w0) = x0 = 1, w0 = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8},

X1 = X(w1) =

{

x1,1 = 1.5, w1 = w1,1 = {ω1, ω2, ω3, ω4}
x1,2 = 0.5, w1 = w1,2 = {ω5, ω6, ω7, ω8}

X2 = X(w2) =















x2,1 = 2, w2 = w2,1 = {ω1, ω2}
x2,2 = 1.2, w2 = w2,2 = {ω3, ω4}
x2,3 = 0.9, w2 = w2,3 = {ω5, ω6}
x2,4 = 0.3, w2 = w2,4 = {ω7, ω8}

X3 = X(w3) =















































x3,1 = 4, w3 = w3,1 = {ω1}
x3,2 = 3, w3 = w3,2 = {ω2}
x3,3 = 2.5, w3 = w3,3 = {ω3}
x3,4 = 2, w3 = w3,4 = {ω4}
x3,5 = 1.5, w3 = w3,5 = {ω5}
x3,6 = 1, w3 = w3,6 = {ω6}
x3,7 = 0.5, w3 = w3,7 = {ω7}
x3,8 = 0.125, w3 = w3,8 = {ω8}
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Therefore, depending on the particular history, {wt}
3
t=0 we have a particular

realization {Xt}
3
t=0, that is a sequence, for example {1, 0.50.9, 1}, if the process

is adapted. �

Observations:
(1) Seen as a function, we may write X : Ω → T × RNt where Nt is the number
of elements of the partition Pt.
(2) The stochastic process takes a constant value for any ω ∈ At such that
At ∈ Pt, i.e., for every element of the partition Pt.
(3) For each t, we have Xt ∈ RNt , is a random variable that can take as many
values as the elements of Pt.
(4) At a given period t the past and present values of Xt are known. This is the
meaning of ”measurability as regards Ft”. In addition, in any given moment we
know that the true state belongs to a particular subset of the partition Pt (as
the past history had led us to it). As the partitions are increasingly ”thinner”,
the observation of past values of X may allow us to infer what the subsequent
states of nature will be observed (and the true state will be one of them). There-
fore, analogously to a random variable, which also induces a measure over Ω, a
stochastic process also generates a filtration (which is based on the past history
of the process).

Definition 7. The stochastic process X = {Xt : t = 0, 1, . . . , T} is a pre-
dictable process as regards the filtration F = {Ft : t = 0, 1, . . . , T} if the
random variable Xt is measurable as regards Ft−1, for every t ∈ T. That is, for
time 0 ≤ t ≤ T

Xt = X(wt−1) = (Xt1, . . . , Xt,Nt−1)

Observation: As Ft−1 ⊆ Ft then the predictable processes are also adapted
as regards the filtration F.

As the underlying space (Ω,F , P ) is a probability space, there is an associated
probability of following a particular sequence {x0, . . . , xt}

2

P (Xt = xt, Xt−1, = xt−1, . . . , X0 = x0), t ∈ [0, T ].

We can write, the conditional probability for t + 1

P (Xt+1 = xt+1|Xt = xt, Xt−1, = xt−1, . . . , X0 = x0) =

P (Xt+1 = xt+1, Xt = xt, Xt−1, = xt−1, . . . , X0 = x0)

P (Xt = xt, Xt−1, = xt−1, . . . , X0 = x0)
(4.2)

We will characterize it next through its conditional and unconditional mo-
ments.

2Off course the same definitions apply for any subsequence t0, . . . , tn.
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4.1.3 Conditional probabilities

Definition 8. The unconditional mathematical expectation of the random
variable Y as regards F is written as E0(Y ) = E(Y | F0), for any t ∈ T.

Definition 9. The conditional mathematical expectation of the random
variable Y as regads F is written as Et(Y ) = E(Y | Ft), for any t ∈ T.

The conditional expectation is a random variable which is measurable as re-
gards G ⊆ Ft, for any t ∈ T and has the following properties:

• E(X | G) ≥ 0 if X ≥ 0;

• E(aX + bY | G) = aE(X | G) + bE(Y | G) for a and b constant;

• E(X | F0) = E(X) =
∑S

s=1 P (ωs)X(ωs);

• E(1 | G) = 1;

• law of iterated expectations: given Ft−s ⊆ Ft, then

E(X | Ft−s) = E(E(X | Ft) | Ft−s),

or, equivalently,
Et−s(Et(X)) = Et−s(X);

• if Y measurable as regards Ft then E(Y | Ft) = Y ;

• if Y is independent as regards Ft then E(Y | Ft) = E(Y );

• if Y is measurable as regards Ft then E(Y X | Ft) = Y E(X | Ft).

For a stochastic process, the unconditional mathematical expectation
of Xt is

E0(Xt) = E(Xt|F0) =
Nt
∑

s=1

P (Xt = xt,s)xt,s =
Nt
∑

s=1

πt
0(xt,s)xt,s

where xt,s = X(wt = wt,s), and the unconditional variance of Xt is

V0(Xt) = V (Xt|F0) = E0[(Xt − E0(Xt))
2] =

Nt
∑

s=1

πt
0(xt,s)(xt,s − E0(Xt))

2.

The conditional mathematical expectation of Xt as regards Fs with s ≤ t
is denoted by

Es(Xt) = E(Xt | Fs).



43

Using our previous notation, we immediatly see that Es(Xt) is a random
variable, measurable as regards Fs, that is

Es(Xt) = (Es,1(Xt), . . . Es,Ns
(Xt).

Again, we can consider the case in which the expectation is taken relative to a
given history Xs = Y s that is to a particular path {xs = ys, xs−1 = ys−1, . . . , x0 =
y0},

Es,i(Xt) =

Nt
∑

j=0

P (Xt = xt,j |Y
s)Xt,j =

Nt
∑

j=0

πt
s(Xt,j |Y

s)Xt,j , i = 1, . . . , Nt−1

or relative to a given value of the process at time s, Xs

Es,i(Xt) =
Nt
∑

j=0

P (Xt = xt,j |Xs = xs,i)Xt,j =
Nt
∑

j=0

πt
s(Xt,j|Xs,i)Xt,j , i = 1, . . . , Nt−1

4.1.4 Some important processes

Stationary process: a stochastic process {Xt, t ∈ T} is stationary if the joint
probability is invariant to time shifts

P (Xt+h = xt+h, Xt+h−1 = xt+h−1 . . .Xs+h = xs+h) = P (Xt = xt, Xt−1 = xt−1 . . .Xs = xs)

For example, a sequence of independent and identically distributed random vari-
ables generates a stationary process.

Example : A random walk, X, is a process such that X0 = 0 and Xt+1 −Xt,
for t = 0, 1, . . . , T − 1 are i.i.d. X is both a stationary process and a martingale.

Processes with independent variation: a process {Xt, t ∈ T} has inde-
pendent variations if the random variation between any two moments Xtj −Xtj−1

is independent from any other sequence of time instants.

Wiener process

It is an example of a stationary stochastic process with independent variations
(and continuous sample paths) W t = {Wt, t ∈ [0, T )} such that

W0 = 0, E0(Wt) = 0, V0(Wt − Ws) = t − s,

for any pair t, s ∈∈ [0, T ).
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Markov processes and Markov chains

Markov processes have the Markov property:

P (Xt+h = xt+h|X
t = xt) = P (Xt+h = xt+h|Xt = xt)

where X t = xt denotes {Xt = xt, Xt−1 = xt−1, . . . , X0 = x0} and P (Xt+h =
xt+h|X

t = xt) is called a transition probability.

That is, the conditional probability of any state in the future, conditional on
the past history is only dependent on the present state of the process. In other
words, the only relevant probabilities are transition probabilities. The sequences
of transition probabilities are independent of the

If we assume that we have a finite number of states, that is Xt can only take
a finite number of values

Y = {y1, . . . , yM}

then we have a (discrete-time) Markov chain. Then, the transition probability
can be denoted as

πj
i (n) = P (Xtn+1 = yj|Xtn = yi)

the transition probability from state yi to state yj at time tn. Obviously,

0 ≤ πj
i (n) ≤ 1,

M
∑

j=1

πj
i (n) = 1

for any n.
The transitional probability πj

i (n) is conditional. We have the unconditional
probaility

πi(n) = P (Xtn = yi)

and the recurrence relationship between conditional and unconditional probabil-
ities

πj(n + 1) =

M
∑

j=1

πj
i (n)πi(n)

determining the unconditional probability that the Markov chain will be in state
yj at n + 1.

We can determine the vector of probailities for all states in Y through the
transition probability matrix

P(n + 1) = π(n)P(n)

where

P(n) =





π1

. . .
πM



 , π =







π1
1 . . . π1

M
...

...
...

πM
1 . . . πM

M






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4.2 Stochastic Dynamic Programming

From the set of all feasible random sequences {xt, ut}
T
t=0 where xt = xt(w

t) and
ut = ut(w

t) are Ft-adapted processes, choose a contingent plan {x∗
t , u

∗
t}

T
t=0 such

that

max
{ut}T

t=0

E0

[

T
∑

t=0

βtf(ut, xt)

]

where

E0

[

T
∑

t=0

βtf(ut, xt)

]

= E

[

T
∑

t=0

βtf(ut, xt) | F0

]

subject to the random sequence of constraints

x1 = g(x0, u0)

. . .

xt+1 = g(xt, ut, w
t+1), t = 1, . . . , T − 2

. . .

xT = g(xT−1, uT−1, w
T )

where x0 is given and wt is a Ft-adapted process representing the uncertainty
affecting the agent decision.

Intuition: at the beginning of a period t xt and ut are known but the value
of xt+1, at the end of period t is conditional on the value of wt+1. The values
of this random process may depend on an exogenous variable which is given by
a stochastic process.

Let us call {u∗
t}

T
t=0 the optimal control. This is, in fact, a contingent plan,

i.e., a planned sequence of decisions conditional on the sequence of states of
nature (or events).

At time t = 0 the optimal value of the state variable x0 is

V0 = V (x0) = E0

[

T
∑

t=0

βtf(u∗
t , xt)

]

=

= max
{ut}T

t=0

E0

[

T
∑

t=0

βtf(ut, xt)

]

=

= max
{ut}T

t=0

E0

[

f(u0, x0) + β

T
∑

t=1

βt−1f(u∗
t , xt)

]

=

= max
u0

{

f(u0, x0) + βE0

[

max
{ut}T

t=1

E1

[

T
∑

t=1

βt−1f(u∗
t , xt)

]]}
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by the principle of DP, by the fact the the t = 0 variables are measurable as
regards F0 and because of the law of iterated expectations. Then

V0 = max
u0

[f0 + βE0(V1)]

or
V (x0) = max

u0

{f(u0, x0) + βE0[V (x1)]}

where u0, x0 and V0 are F0-adapted and x1 = g(u0, x0, w
1), in V1, is F1-adapted.

The same idea can be extended to any 0 ≤ t ≤ T . Then

V (xt) = max
ut

{f(ut, xt) + βEt[V (xt+1)]}

and, under boundness conditions, for the case in which T → ∞.

Observe that {V (xt)}
∞
t=0 is a Ft-adapted stochastic process and the opera-

tor Et(.) is a probability measure conditional on the information available at t
(represented by Ft).

If {x}T
t=0 follows a k-state Markov process then the HJB equation can be

written as

V (xt) = max
ut

{

f(ut, xt) + β
k
∑

s=1

π(s)V (xt+1(s))

}
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4.3 Applications

4.3.1 The representative consumer

Assumptions :

• there are K short run financial assets which have a price Sj
t , j = 1, . . . , K

at time t that entitle to a contingent payoff Dj
t+1 at time t + 1;

• the value of the portfolio at the end of period t is
∑K

j=1 θj
t+1S

j
t , and its

conditional payoff, at the beginning of period t+1 is
∑K

j=1 θj
t+1(S

j
t+1+V j

t+1),

where θt+1, Sj
t and V j

t are Ft-measurable,

• the stream of endowments, is {yt}
T
t=0 where yt is Ft-measurable;

• A0 6= 0.

Budget constraints The consumer faces a (random) sequence of budget con-
straints, which defines his feasible contingent plans:

• At time t = 0

c0 +

K
∑

j=1

θj
1S

j
0 ≤ y0 + A0

where all the components are scalars.

• At time t = 1, we have

c1 +
K
∑

j=1

θj
2S

j
1 ≤ y1 +

K
∑

j=1

θj
1(S

j
1 + V j

1 )

where c1, y1 and θ2 are F1-measurable, that is

c1(s) +

K
∑

j=1

θj
2(s)S

j
1(s) ≤ y1(s) +

K
∑

j=1

θj
1(S

j
1(s) + V j

1 (s)), . . . s = 1, . . . , N1

if we assume, for simplicity, that dim(Ω) = N .

Looking at the two budget constraints, we get the non-human wealth at
time t = 1 (which is also F1-measurable) as

A1 :=
K
∑

j=1

θj
1(S

j
1 + V j

1 )
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Then, the sequence of instantaneous budget constraints is

yt + At ≥ ct +

K
∑

j=1

θj
t+1S

j
t , t ∈ [0,∞) (4.3)

At+1 =
K
∑

j=1

θj
t+1

(

Sj
t+1 + V j

t+1

)

, t ∈ [0,∞) (4.4)

The representative consumer chooses a strategy of consumption, represented
by the adapted process c := {ct, t ∈ T} and of financial transactions in K
financial assets, represented by the forecastable process θ := {θt, t ∈ T}, where
θt = (θ1

t , . . . , θ
K
t ) in order to solve the following problem

max
{c,θ}

E0

[

∞
∑

t=0

βtu(ct)

]

subject to equations (4.3)-(4.4), where A(0) = A0 is given and

lim
k→∞

Et

[

βkSj
t+k

]

= 0.

The last condition prevents consumers from playing Ponzi games. It rules out
the existence of arbitrage opportunities.

Solution by using dynamic programming

The HJB equation is

V (At) = max
ct

{u(ct) + βEt [V (At+1)]} .

In our case, we may solve it by determining the optimal transactions strategy

V (At) = max
θj
t+1,j=1,..,K

{

u

[

yt + At −
K
∑

j=1

θj
t+1S

j
t

]

+

+βEt

[

V
(

At+1(θ
1
t+1, . . . , θ

K
t+1)

)]}

(4.5)

The optimality condition, is

−u
′

(ct)S
j
t + βEt

[

V
′

(At+1)(S
j
t+1 + V j

t+1)
]

= 0,

for every asset j = 1, . . . , K.
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In order to simplify this expression, we may apply the Benveniste-Scheinkman
formula (see (Ljungqvist and Sargent, 2000, p. 237) ) by substituting the opti-
mality conditions in equation (4.5) and by diferentiating it in order to At. Then
we get

V
′

(At) = u
′

(ct).

However, we cannot go further without specifying the utility function, a particular
probability process and the stochastic processes for the asset prices and returns.

Intertemporal arbitrage condition

The optimality conditions may be rewritten as the following intertemporal arbi-
trage conditions for the representative consumer

u
′

(ct)S
j
t = βEt

[

u
′

(ct+1)(S
j
t+1 + V j

t+1)
]

, j = 1, . . . , K, t ∈ [0,∞). (4.6)

This model is imbedded in a financial market institutional framework that pre-
vents the existence of arbitrage opportunities.

This imposes conditions on the asymptotic properties of prices, which imposes
conditions on the solution of the consumer’s problem.

Taking equation (4.6) and operating recursively, the consumer chooses an
optimal trajectory of consumption such that (remember that the asset prices and
the payoffs are given to the consumer)

Sj
t = Et

[

∞
∑

τ=1

βτ u
′
(ct+τ )

u′(ct)
V j

t+τ

]

, j = 1, . . . , K, t ∈ [0,∞) (4.7)

In order to prove this note that by repeatedly applying the law of iterated
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expectations

u
′

(ct)S
j
t = βEt

[

u
′

(ct+1)(S
j
t+1 + V j

t+1)
]

=

= βEt

[

u
′

(ct+1)S
j
t+1

]

+ βEt

[

u
′

(ct+1)V
j
t+1

]

=

= βEt

{

βEt+1

[

u
′

(ct+2)(S
j
t+2 + V j

t+2)
]}

+

+βEt

[

u
′

(ct+1)V
j
t+1

]

=

= βEt

{

βEt+1

[

u
′

(ct+2)S
j
t+2

]}

+

+Et

{

βu
′

(ct+1)V
j
t+1 + β2Et+1

[

u
′

(c(t+2)V
j
t+2

]}

=

= β2Et

[

u
′

(ct+2)S
j
t+2

]

+ Et

[

2
∑

τ=1

βτu
′

(ct+τ )V
j
t+τ

]

=

. . .

= βkEt

[

u
′

(ct+k)S
j
t+k)

]

+ Et

[

k
∑

τ=1

βτu
′

(ct+τ )V
j
t+τ

]

=

. . .

= lim
k→∞

βkEt

[

u
′

(ct+k)S
j(t + k)

]

+ Et

[

∞
∑

τ=1

βτu
′

(ct+τ )V
j(t + τ)

]

The condition for ruling out speculative bubbles,

lim
k→∞

βkEt

[

u
′

(ct+k)S
j
t+k

]

= 0

allows us to get equation (4.7).

References: Ljungqvist and Sargent (2000)



Chapter 5

Continuous time

5.1 Introduction to continuous time stochastic

processes

Assume that T = R+ and that the probability space is (Ω,F , P ) where Ω is of
infinite dimension.

Let F = {Ft, t ∈ T} be a filtration over the probability space (Ω,F , P ).
(Ω,F , F, P ) may be called a filtered probability space.

A stochastic process is a flow X = {X(t, ω), t ∈ T, ω ∈ Ft}.

5.1.1 Brownian motions

Definition 10. Brownian motion Assume the probability space (Ω,F , P x), a
sequence of sets Ft ∈ R and the stochastic process B = {B(t), t ∈ T} such that a
sequence of distributions over B are given by

P x(B(t1) ∈ F1, . . . , B(tk) ∈ Fk) =

=

∫

F1×...×Fk

p(t1, x, x1) . . . p(t2 − t1, x1, x2) . . . p(tk − tk−1, xk−1, xk)dx1dx2 . . . dxk,

where the conditional probabilities are

P (B(tj) = xj | B(ti) = xi) = p(tj − ti, xi, xj) = (2π(tj − ti))
− 1

2 e
−

|xj−xi|
2

2(tj−ti) .

Then B is a Brownian motion (or Wiener process), starting from the initial state
x, where (P x(B(0) = x) = 1).

Remark We consider one-dimensional Brownian motions: that is, those for
which the trajectories have continuous versions, B(ω) : T → Rn where t 7→ Bt(ω),
with n = 1.
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Properties of B

1. B is a gaussian process:
that is, Z = (B(t1), . . . , B(tk)) has a normal distribution with mean M =
Ex[Z] = (x, . . . , x) ∈ Rk and variance-covariance matrix

Ex[(Zj − Mj)(Zi − Mi)]i,j=1,...k =









t1 t1 . . . t1
t1 t2 . . . t2
. . . . . . . . . . . .
t1 t1 . . . tk









and, for any moment t ≥ 0

Ex[B(t)] = x,

Ex[(B(t) − x)2] = t,

Ex[(B(t) − x)(B(s) − x)] = min (t, s),

Ex[(B(t) − B(s))2] = t − s.

2. B has independent variations:
given a sequence of moments 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk and the sequence of
variations of a Brownian motion, Bt2 − Bt1 , . . . , Btk − Btk−1 we have

Ex[(B(ti) − B(ti−1)(B(tj) − B(tj−1)] = 0, ti < tj

3. B has continuous versions;

4. B is a stationary process:
that is B(t+h)−B(t), with h ≥ 0 has the same distribution for any t ∈ T;

5. B is not differentiable (with probability 1) in the Riemannian sense.

Observation: it is very common to consider B(0) = 0, that is x = 0.

5.1.2 Processes and functions of B

As with random variables and with stochastic processes over a finite number of
periods and states of nature:
(1) if we can define a filtration, we can build a stochastic process or,
(2) given a stochastic process, we may define a filtration.

Observation: for random variables (if we define a measure we can define a
random variable, or a random variables may induce measures in a measurable
space).
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Definition 11. (filtration)
F = {Ft, t ∈ T} is a filtration if it verifies:
(1) Fs ⊂ Ft if s < t
(2) Ft ⊂ F for any t ∈ T

Definition 12. (Filtration over a Brownian motion)
Consider a sequence of subsets of R, F1, F2, . . . , Fk where Fj ⊂ R and let B be a
Brownian motion of dimension 1. Ft is a σ−algebra generated by B(s) such that
s ≤ t, if it is the finest partition which contains the subsets of the form

{ω : Bt1(ω) ∈ F1, . . . , Btk(ω) ∈ Fk}

if t1, t2, . . . , tk ≤ t.

Intuition Ft is the set of all the histories of Bj up to time t.

Definition 13. (Ft-measurable function)
A function h(ω) is called a Ft-measurable if and only if it can be expressed as the
limit of the sum of function of the form

h(t, ω) = g1(B(t1))g2(B(t2)) . . . gk(B(tk)), t1, t2, . . . , tk ≤ t.

Intuition h is a function of present and past values of a Brownian motion.

Definition 14. (Ft-adapted process)
If F = {Ft, t ∈ T} is a filtration then the process g = {g(t, ω), t ∈ T, ω ∈ Ω} is
called Ft-adapted if for every t ≥ 0 the function ω 7→ gt(ω) is Ft-measurable.

For what is presented next, there are two important types of functions and
processes:

Definition 15. (Class N functions)
Let f : T × Ω → R. If

1. f(t, ω) is Ft-adapted;

2. E
[

∫ T

s
f(t, ω)2dt

]

< ∞,

then f ∈ N(s, T ), is called a class N(s, T ) function.

Definition 16. (Martingale)
The stochastic process M = {M(t), t ∈ T} defined over (Ω,F , P ) is a martingale
as regards the filtration F if
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1. M(t) is Ft-measurable, for any t ∈ T,

2. E[| M(t) |] < ∞, for any t ∈ T,

3. the martingale property holds

E[M(s) | Ft] = M(t),

for any s ≥ t.

5.1.3 Itô’s integral

Definition 17. (Itô’s integral)
Let f be a function of class N and B(t) a one-dimensional Brownian motion.
Then the Itô’s integral is denoted as

I(f, ω) =

∫ T

s

f(t, ω)dBt(ω)

If f is a class N function, it can be proved that the sequence of elementary
functions of class N φn where

∫ T

s
φ(t, ω)dBt(ω) =

∑

j≥0 ej(ω)[Btj+1
(ω)−Btj (ω)],

verifying limn→∞ E[
∫ T

s
| f − φn |2 dt] = 0, such that Itô’s integral is defined as

I(f, ω) =

∫ T

s

f(t, ω)dBt(ω) = lim
n→∞

∫ T

s

φn(t, ω)dBt(ω).

Intuition: as f is not differentiable (in the Riemannian sense), we may have
several definitions of integral. Itô’s integral approximates the function f by step
functions the ej evaluated at the beginning of the interval (tj+1, tj). The
Stratonovich integral

∫ T

s

f(t, ω) ◦ dBt(ω)

evaluates in the intermediate point of the intervals.

Theorem 1. (Properties of Itô’s integral)
Consider two class N function f, g ∈ N(0, T ), then

1.
∫ T

s
fdBt =

∫ U

s
fdBt +

∫ T

U
fdBt for almost every ω and for 0 ≤ s < U < T ;

2.
∫ T

s
(cf + g)dBt = c

∫ T

s
fdBt +

∫ T

s
gdBt for almost all ω and for c constant;

3. E
(

∫ T

s
fdBt

)

= 0;

4. has continuous versions up to time t, that is there is a stochastic process

J = {J(t), t ∈ T} such that P
(

J(t) =
∫ t

0
fdBt

)

= 1 for any 0 ≤ t ≤ T ;

5. M(t, ω) =
∫ t

0
f(s, ω)dBs is a martingale as regards the filtration Ft.
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5.1.4 Stochastic integrals

Up to this point we presented a theory of integration, and implicitly of differen-
tiation. The Itô’s presents a very useful stochastic counterpart of the chain rule
of differentiation.

Definition 18. (Itô’s process or stochastic integral)
Let Bt be a one-dimensional Brownian motion over (Ω,F , P ). Let ν be a class

N function (i.e., such that P
(

∫ t

0
ν(s, ω)2ds < ∞, ∀t ≥ 0

)

= 1) and let µ be a

function of class Ht (i.e., such that

P
(

∫ t

0
| µ(s, ω) | ds < ∞, ∀t ≥ 0

)

= 1).

Then X = {X(t), t ∈ T} where X(t) has the domain (Ω,F , P ), is a stochastc
integral of dimension one if it is a stochastic process with the following equivalent
representations:

1. integral representation

X(t) = X(0) +

∫ t

0

µ(s, ω)ds +

∫ t

0

ν(s, ω)dBs

2. differential representation

dX(t) = u(t, ω)dt + ν(t, ω)dB(t)

Lemma 3. (Itô’s lemma)
Let X(t) be a stochastic integral in its differential representation

dX(t) = µdt + νdB(t)

and let g(t, x) be a continuous differentiable function as regards its two arguments.
Then

Y = {Y (t) = g(t, X(t)), t ∈ T}

is a stochastic process that verifies

dY (t) =
∂g

∂t
(t, X(t))dt +

∂g

∂x
(t, X(t))dX(t) +

1

2

∂2g

∂x2
(t, X(t))(dX(t))2.

We apply the rule: dt2 = dtdB(t) = 0 e dB(t)2 = dt then

dY (t) =

(

∂g

∂t
(t, X(t)) +

∂g

∂x
(t, X(t))µ +

1

2

∂2g

∂x2
(t, X(t))ν2

)

dt+
∂g

∂x
(t, X(t))νdB(t).
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Example 1 Let X(t) = B(t) where B is a Brownian motion. Which process
follows Y (t) = (1/2)B(t)2 ? If we write Y (t) = g(t, x) = (1/2)x2 and apply Itô’s
lemma we get

dY (t) = d

(

1

2
B(t)2

)

=

=
∂g

∂t
dt +

∂g

∂x
dB(t) +

1

2

∂2g

∂x2
(dB(t))2 =

= 0 + B(t)dB(t) +
1

2
dB(t)2

= B(t)dB(t) +
dt

2
,

or in the integral representation

Y (t) =

∫ t

0

dY (t) =
1

2
B(t)2 =

∫ t

0

B(s)dB(s) +
t

2
.

Example 2 Let dX(t) = µX(t)dt + σX(t)dB(t) and let Y (t) = ln(X(t)).
Find the SDE for Y . Applying the Itô’s lemma

dY (t) =
∂Y

∂X
dX(t) +

1

2

∂2Y

∂X2
(dX(t))2 =

=
dX(t)

X(t)
−

1

2X(t)2
(dX(t))2 =

= µdt + σdB(t) −
σ2

2
dt

Then

dY (t) =

(

µ −
σ2

2

)

dt + σdB(t)

or, in the integral representation

Y (t) = Y (0) +

∫ t

0

µ −
σ2

2
ds +

∫ t

0

σdB(s) =

= Y (0) +

(

µ −
σ2

2

)

t + σB(t)

if B(0) = 0.

The process X is called a geometric Brownian motion, as its integral
(which is the exp(Y ) is

X(t) = X(0)e

“

µ−σ2

2

”

t+σB(t)
.
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Example 3: Let Y (t) = eaB(t). Find a stochastic integral for Y . From the
Itô’s lemma

dY (t) = aeaB(t)dB(t) +
1

2
a2eaB(t)(dB(t))2 =

=
1

2
a2eaB(t)dt + aeaB(t)dB(t)

the integral representation is

Y (t) = Y (0) +
1

2
a2

∫ t

0

eaB(s)ds + a

∫ t

0

eaB(s)dB(s)

5.1.5 Stochastic differential equations

Stochastic differential equation’s theory is a very vast field. Here we will only
present some results that we will be useful afterwards.

Definition 19. (SDE)
A stochastic differential equation can be defined as

dX(t)

dt
= b(t, X(t)) + σ(t, X(t))W (t)

where b(t, x) ∈ R, σ ∈ R and W (t) represents a one-dimensional ”noise”.

Definition 20. (SDE: Itô’s interpretation)
X(t) satisfies a stochastic differential equation is

dX(t) = b(t, X(t))dt + σ(t, X(t))dB(t)

or in the integral representation

X(t) = X(0) +

∫ t

0

b(s, X(s))ds +

∫ t

0

σ(s, X(s))dB(s).

How to solve, or study qualitatively, the solution of those equations ?

There are two solution concepts: weak and strong. We say that the process
X is a strong solution if X(t) is Ft-adapted, and if B(t) is given, it verifies the
representation of the SDE.

An important special case is the diffusion equation, which is the SDE with
constant coefficients and multiplicative noise

dX(t) = aX(t)dt + σX(t)dB(t).

As we already saw, the (strong) solution is the stochastic process X such
that

X(t) = xe(a−σ2

2
)t+σB(t)
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where x is a random variable, which can be determined from x = X(0), where
X(0) is a given initial distribution , and B(t) =

∫ t

0
dB(s), if B(0) = B0 = 0.

Properties:

1. asymptotic behavior:
- if a − σ2

2
< 0 then limt→∞ X(t) = 0 a.s.

- if a − σ2

2
> 0 then limt→∞ X(t) = ∞ a.s.

- if a − σ2

2
= 0 then limt→∞ X(t) will be finite a.s.

2. can we say anything about E[X(t)] ?

E(X(t)) = E(X(0))eat

To prove this, take Example 3 and observe that the stochastic integral of
Y (t) = eaB(t) is

Y (t) = Y (0) +
1

2
a2

∫ t

0

eaB(s)ds + a

∫ t

0

eaB(s)dB(s)

taking expected values

E[Y (t)] = E[Y (0)] + E

[

1

2
a2

∫ t

0

eaB(s)ds

]

+ aE

[∫ t

0

eaB(s)dB(s)

]

=

= E[Y (0)] +
1

2
a2

∫ t

0

E
[

eaB(s)
]

ds + 0

because eaB(s) is a f -class function (from the properties of the Brownian motian.
Differentiating

dE[Y (t)]

dt
=

1

2
a2E[Y (t)]

as E[Y (0)] = 1. Then

E[Y (t)] = e
1
2
a2t

References: Oksendal (2003)



59

5.1.6 Stochastic optimal control

Finite horizon

We consider the stochastic optimal control problem, that consists in determining
the value function, J(.),

J(t0, x0) = max
u

Et0

[
∫ T

t0

f(t, x, u)dt

]

sbject to
dx(t) = g(t, x(t), u(t))dt + σ(t, x(t), u(t))dB(t)

given the initial distribution for the state variable x(t0, ω) = x0(ω). We call u(.)
the control variable and assume that the objective, the drift and the volatility
functions, f(.), g(.) and σ(.), are of class H (the second) and N (the other two).

By applying the Bellman’s principle, the following nonlinear partial differ-
ential equation over the value function, called the Hamilton-Jacobi-Bellman
equation, gives us the necessary conditions for optimality

−
∂J(t, x)

∂t
= max

u

(

f(t, x, u) + g(t, x, u)
∂J(t, x)

∂x
+

1

2
σ(t, x, u)2∂2J(t, x)

∂x2

)

.

In order to prove it, heuristically, observe that a solution of the problem
verifies

J(t0, x0) = max
u

Et0

(
∫ T

t0

f(t, x, u)dt

)

=

= max
u

Et0

(
∫ t0+∆t

t0

f(t, x, u)dt +

∫ T

t0+∆t

f(t, x, u)dt

)

by the principle of the dynamic programming and the law of iterated expectations
we have

J(t0, x0) = max
u,t0≤t0+∆t

Et0

[∫ t0+∆t

t0

f(t, x, u)dt + max
u,t0≤t0+∆t

Et0+∆t

[∫ T

t0+∆t

f(t, x, u)dt

]]

= max
u,t0≤t0+∆t

Et0 [f(t, x, u)∆t + J(t0 + ∆t, x0 + ∆x)]

if we write x(t0 +∆t) = x0 +∆x. If J is continuously differentiable of the second
order, the Itô’s lemma may be applied to get, for any t

J(t + ∆t, x + ∆x) = J(t, x) + Jt(t, x)∆t + Jx(t, x)∆x +
1

2
Jxx(t, x)(∆x)2 + h.o.t
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where

∆x = g∆t + σ∆B

(∆x)2 = g2(∆t)2 + 2gσ(∆t)(∆B) + σ2(∆B)2 = σ2∆t.

Then,

J = max
u

E

[

f∆t + J + Jt∆t + Jxg∆t + Jxσ∆B +
1

2
σ2Jxx∆t

]

= max
u

[

f∆t + J + Jt∆t + Jxg∆t +
1

2
σ2Jxx∆t

]

as E0(dB) = 0. Taking the limit ∆ → 0, we get the HJB equation.

Infinite horizon

The autonomous discounted infinite horizon problem is

V (x0) = max
u

E0

[
∫ ∞

0

f(x, u)e−ρtdt

]

subject to
dx(t) = g(x(t), u(t))dt + σ(x(t), u(t))dB(t)

given the initial distribution of the state variable x(0, ω) = x0(ω), and assuming
the same properties for functions f(.), g(.) and σ(.). Also ρ > 0.

Applying, again, the Bellman’s principle, now the HJB equation is the non-
linear ordinary differential equation of the form

ρV (x) = max
u

(

f(x, u) + g(t, x, u)V
′

(x) +
1

2
σ(x, u)2V

′′

(x)

)

.

References Kamien and Schwartz (1991, cap. 22).
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5.2 Applications

5.2.1 The representative agent problem

Here we present essentially the Merton (1971) model, which is a micro model for
the simultaneous determination of the strategies of consumption and portfolio
investment. We next present a simplified version with one risky and one riskless
asset.

Let the exogenous processes be given to the representative consumer

dβ(t) = rβ(t)dt

dS(t) = µS(t)dt + σS(t)dB(t)

where β and S are respectively the prices of the risky and the riskless assets, r is
the interest rate, µ and σ are the constant rates of return and volatility for the
equity.

The stock of financial wealth is denoted by A(t) = θ0(t)β(t) + θ1(t)S(t), for
any t ∈ T. Assume that A(0) = θ0(0)β(0) + θ1(0)S(0) is known.

Assume that the agent also gets an endowment {y(t), t ∈ R} which adds to
the incomes from financial investments and that the consumer uses the proceeds
for consumption. Then the value of financial wealth at time t is

A(t) = A(0)+

∫ t

0

(rθ0(s)β(s) + µθ1(s)S(s) + y(s) − c(s)) ds+

∫ t

0

σµθ1(s)S(s)dB(s).

If the weight of the equity in total wealth is denoted by w = θ1S
A

then 1−w =
θ0β
A

. Then, we get the differential representation of the instantaneous budget
constraint comes

dA(t) = [r(1 − w(t))A(t) + µw(t)A(t) + y(t) − c(t)]dt + w(t)σA(t)dB(t). (5.1)

The problem for the consumer-investor is

max
c,w

E0

[∫ ∞

0

u(c(t))e−ρtdt

]

(5.2)

subject to the instantaneous budget constraint (5.1), given A(0) and assuming
that the utility function is increasing and concave.

This is a stochastic optimal control problem with infinite horizon, and has
two control variables. The Hamilton-Jacobi-Bellman equation is

ρV (A) = max
c,w

{

u(c) + V
′

(A)[(r(1 − w) + µw)A + y − c] +
1

2
w2σ2A2V

′′

(A)

}

.
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The first order necessary conditions allows us to get the optimal controls, i.e. the
optimal policies for consumption and portfolio composition

u
′

(c∗) = V
′

(A), (5.3)

w∗ =
(r − µ)V

′
(A)

σ2AV ′′(A)
(5.4)

If u
′′
(.) < 0 then the optimal policy function for consumption may be written as

c∗ = h(V
′
(A)). Plugging into the HJB equation, we get the differential equation

over V (A)

ρV (A) = u
(

h(V
′

(A)‘)
)

− h(V
′

(A))V
′

(A)(y + rA)V
′

(A) −
(r − µ)2(V

′
(A))2

2σ2V ′′(A)
.

(5.5)
In some cases the equation may be solve explicitly. In particular, let the utility
function be CRRA as

u(c) =
c1−η − 1

1 − η
, η > 0

and conjecture that the solution for equation (5.5) is of the type

V (A) = x(y + rA)1−η

for x an unknow constant. If it is indeed a solution, there should be a constant,
dependent upon the parameters of the model, such that equation (5.5) holds.

First note that

V
′

(A) = (1 − η)rx(y + rA)−η

V
′′

(A) = −η(1 − η)r2x(y + rA)−η−1

then: the optimal consumption policy is

c∗ = (xr(1 − η))−
1
η (y + rA)

and the optimal portfolio composition is

w∗ =

(

µ − r

σ2

)

y + rA

ηrA

Interestingly it is a linear function of the ratio of total (human plus financial
wealth y

r
+ a ) over financial wealth.

After some algebra, we get

V (A) = Θ

(

y + rA

r

)1−η
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where 1

Θ ≡
1

1 − η

[

ρr(1 − η)

η
−

(1 − η)

2η2

(

µ − r

σ

)2
]−η

Then the optimal consumption is

c∗ =

(

ρr(1 − η)

η
−

(1 − η)

2η2

(

µ − r

σ

)2
)

(

y + rA

r

)

If we set the total wealth as W = y
r

+ A, we may write the value function and
the policy functions for consumption and portfolio investment

V (W ) = ΘW 1−η

c∗(W ) = (1 − η)Θ− 1
η W

w∗(W ) =

(

µ − r

ησ2

)

W

A
.

Remark The value function follows a stochastic process which is a monotonous
function for wealth. The optimal strategy for consumption follows a stochastic
process which is a linear function of the process for wealth and the fraction of
the risky asset in the optimal portfolio is a direct function of the premium of the
risky asset relative to the riskless asset and is a inverse function of the volatility.

We see that the consumer cannot eliminate risk, in general. If we write

c∗ = χA, where χ ≡ (1 − η)Θ− 1
η W

A
, then the optimal process for wealth is

dA(t) = [r∗ + (µ − r)w∗ − χ]A(t)dt + σw∗A(t)dB(t)

where r∗ = rW
A

, which is a linear SDE. Then as c∗ = c(A), if we apply the Itô’s
lemma we get

dc = χdA = c (µcdt + σcdB(t))

where

µc =
r − ρ

η
+

1 + η

2

(

µ − r

ση

)2

σc =
µ − r

ση
.

The sde has the solution

c(t) = c(0) exp

{(

µc −
σ2

c

2

)

t + σcB(t)

}

1Of course, x = r−(1−η)Θ.
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, where µ−r
σ

is the Sharpe index, and the unconditional expected value for con-
sumption at time t

E0[C(t)] = E0[C(0)]eµct.

References Merton (1971), Merton (1990), Duffie (1996) Cvitanić and Zap-
atero (2004)

5.2.2 The stochastic Ramsey model

Let us assume that the economy is represented by the equations

dK(t) = (F (K(t), L(t)) − C(t))dt

dL(t) = µL(t)dt + σLdB(t)

where we assume that F (K, L) is linearly homogeneous, given the (deterministic)
initial stock of capital and labor K(0) = K0 and L(0) = L0.

The growth of the labor input (or its productivity) is stochastic.
Let us define the variables in intensity terms

k(t) ≡
K(t)

L(t)
, c(t) ≡

C(t)

L(t)

We can get the restriction of the economy as a single equation on k by using the
Itô’s lemma

dk =
∂k

∂K
dK +

∂k

∂L
dL +

1

2

∂2k

∂K2
(dK)2 +

1

2

∂2k

∂K∂L
dKdL +

1

2

∂2k

∂L2
(dL)2

=
F (K, L) − C

L
dt −

K(µLdt + σLdB(t))

L2
+ σ2 K

L
dt

=
(

f(k) − c − (µ − σ2)k
)

dt − σ2kdB(t)

if we set f(k) = F
(

K
L
, 1
)

.

The HJB equation is

ρV (k) = max
c

{

u(c) + V
′

(k)
(

f(k) − c − (µ − σ2)k
)

+
1

2
(kσ)2V ”(k)

}

the optimality condition is again

u
′

(c) = V
′

(k)

and, we get again a 2nd order ODE

ρV (k) = u(h(k)) + V
′

(k)
(

f(k) − h(k) − (µ − σ2)k
)

+
1

2
(kσ)2V ”(k).
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Again, we assume the benchmark particular case: u(c) = c1−θ

1−θ
and f(k) =

kα. Then the optimal policy function becomes

c∗ = V
′

(k)−
1
σ

and the HJB becomes

ρV (k) =
θ

1 − θ
V

′

(k)
θ−1

θ + V
′

(k)
(

kα −−(µ − σ2)k
)

+
1

2
(kσ)2V ”(k)

We can get, again, a closed form solution if we assume further that θ = α.
Again we conjecture that the solution if of the form

V (k) = B0 + B1k
α

Using the same methods as before we get

B0 = (1 − α)
B1

ρ

B1 =
1

1 − α

[

(1 − α)θ

(1 − θ)(ρ − (1 − α)2σ2)

]α

.

Then

V (k) = B1

(

1 − α

ρ
+ k1−α

)

and

c∗ = c(k) =

(

(1 − θ)(ρ − (1 − α)2σ2)

(1 − α)θ

)

k ≡ ̺k

as we see an increase in volatility decreases consumption for every level of the
capital stock.

Then the optimal dynamics of the per capita capital stock is the SDE

dk∗(t) =
(

f(k∗(t)) − (µ + ̺ − σ2)k∗(t)
)

dt − σ2k∗(t)dB(t).

In this case we can not solve it explicitly as in the deterministic case.
References: Brock and Mirman (1972), Merton (1975), Merton (1990)
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