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1 Introduction

A common assumption in the literature on competition between telecommunications net-

works is that of uniform calling patterns: Each customer is equally likely to call any other

customer in the market (e.g., Armstrong, 1998; La¤ont et al., 1998a, 1998b). Amongst

other things, this generates balanced calling patterns, whereby any given customer is

equally likely to make or receive on-net (or, likewise, o¤-net) calls. We show below that

the assumption of uniform calling patterns drives some of the key results in the literature,

such as that with two-part tari¤s marginal call prices should be set at perceived cost, or

that �rms should optimally negotiate below-cost access charges so as to reduce competition

in the market (Gans and King, 2001). O¤-net prices should then be cheaper than on-net

prices, which is a pattern not often observed in practice.

This paper introduces a �exible model allowing for non-uniform calling patterns. Cus-

tomers di¤er in their preferences for a particular network, e.g., how strongly they are

attracted by its brand appeal. Instead of stipulating that a customer is equally likely to

call any other customer, we allow for the fact that a given customer is more likely to call

other customers who have similar preferences (�calling clubs�). For instance, the brand

positioning of a network may be more appealing to a particular age group. Likewise, dif-

ferences in local network coverage could generate similar patterns of call preferences. Both

under general distributional assumptions and for a �exible linear speci�cation, capturing

both the workhorse models of a Hotelling line and a Salop circle, we investigate the im-

plications of skewed versus uniform calling patterns for on- and o¤-net prices, equilibrium

pro�ts, as well as equilibrium access charges.

In our model, �rms o¤er customers on-net and o¤-net calls, while customers di¤er in

their anticipated usage of these two services at either network. Furthermore, given that

the o¤ers of both networks jointly determine their respective subscriber base, for each user

the volume of on-net and o¤-net calls depends both on the tari¤ of the chosen network and

on the tari¤ of competitors. When calling patterns are not uniform, �rms practice price

discrimination by using o¤-net and on-net prices as metering devices, thereby extracting

more of the information rent of consumers who have a strong preference for the respective

network (and therefore make more on-net calls).1 This feature will lead to a distortion

1Given that in our model a customer�s private information at the stage of contracting relates only to
his �horizontal preferences�, there is only a super�cial relation to the literature on multidimensional price
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of marginal prices away from the perceived marginal cost of calls: On-net prices are set

above and o¤-net price are set below their respective perceived marginal cost. This does

not mean, though, that o¤-net prices are set below their economic cost, or below on-net

prices, for that matter. In fact, their equilibrium level will depend on the access charge.

Indeed, our second key result is that the jointly pro�t-maximizing reciprocal access

charge depends crucially on the skewness of calling patterns. When calling patterns are

su¢ ciently localized, an access charge above termination cost is chosen. This also implies

that o¤-net calls will become more expensive than on-net calls. Both results contrast with

the opposite predictions under uniform calling patterns.

In our model, as in most of the literature, customers do not realize positive utility from

received calls. Jeon et al. (2004) show that a change in this assumption can also overturn

some of the results in the received literature. In particular, o¤-net prices can become

much more expensive than on-net prices in order to penalize rival customers that will not

receive many o¤-net calls. However, Cambini and Valletti (2008) show that the resultig

o¤-net �connectivity breakdown�disappears when access charges are chosen endogenously.

Further work has attempted to explain the apparent puzzle of why reciprocal access charges

are typically set above cost in practice, especially in mobile telephony where theoretical

models of network competition are more immediately applicable. Armstrong and Wright

(2009) show that above-cost access charges can result when mobile �rms are also able

to set monopoly access charges for calls from �xed lines, and di¤erential access charges

for termination of calls from �xed and from mobile networks would otherwise generate

arbitrage opportunities. Lopez and Rey (2009) study when high access charges can be

used as a foreclosure device. Jullien et al. (2009) show how above-cost access charges may

relax competition when there are two di¤erent groups of users, heavy users and light users,

and where the light users have a elastic subscription demand.2

Arguably, allowing for non-uniform calling patterns adds realism to models of network

competition. Even when customers are more likely to call those with similar preferences,

our modelling approach still allows both for the case where any customer is called with

positive probability and for the case where only a strict subset of customers will be called

with positive probability. Even in the latter case, the subsets of calling partners will be

discrimination under competition (Armstrong and Vickers, 2001, 2008; Rochet and Stole, 2002).
2Elastic subscription of demand is also analyzed by Hurkens and Jeon (2009), though they �nd that

below-cost access charges should be set to relax the intensity of competition.
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overlapping, which di¤ers from the analysis of �calling clubs�in Gabrielsen and Vagstad

(2008) and Calzada and Valletti (2008), where only customers with identical preferences

form perfectly closed and non-overlapping calling clubs.3

The rest of this paper is organized as follows. Section 2 introduces the model. In Section

3 we solve, for a given network size, for the optimal o¤- and on-net pricing structure.

Section 4 determines equilibrium tari¤s for a given reciprocal access charge, which is in

turn solved for in Section 5. Section 6 o¤ers some concluding remarks.

2 A Model of Competition with �Calling Clubs�

Firms�Costs. We consider competition between two �rms, i = 1; 2. Both �rms incur

a �xed cost f to serve each subscriber. The marginal cost of providing a telephone call

consists in the terminating and originating cost, which for simplicity is assumed to be

symmetric and equal to c0, and the conveying cost, c1. As a result, the total marginal cost

of an on-net call initiated and terminated on the same network i is cii � 2c0 + c1. Firms
pay each other a reciprocal termination access charge a when a call initiated on network

i is terminated on a di¤erent network j. Thus, for an o¤-net call, the economic marginal

cost is still cii, but the �perceived�marginal cost for the network that initiates the call is

cij � c1 + c0 + a.

Consumers�Preferences. The market consists of a mass one of consumers, which di¤er

in their preferences for the two �rms. As is standard, any given consumer is characterized

by his preferred characteristics, where we normalize the space of characteristics to x 2
X := [0; 1]. Consumers� preferences are distributed according to some atomless CDF

H(x) with density h(x) > 0 over X, while the two �rms�own �attributes�are represented

by their respective locations at the two extremes. (Note, however, that below we comment

on how our example with a linear (Hotelling) speci�cation extends to the case where the

space of preferences is represented, instead, by a Salop circle.)

With some abuse of notation, it is convenient to refer to the locations for �rms as xi,

such that x1 = 0 and x2 = 1 respectively. Preferences and �rms�locations may relate to

3While we allow for di¤erences in on- and o¤-net prices, in this paper we do not consider the endogenous
formation of such �calling clubs� through a pricing structure that could, for instance, condition on the
identity of the called persons (�friends and family�).
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the brand image that a given �rm has created through its marketing. We keep our analysis

symmetric by stipulating that H(x) = 1 � H(1 � x), which implies, in particular, that
h (x) = h (1� x) and H(1=2) = 1=2.
A consumer subscribed to �rm i obtains the quasi-linear utility

y + v0 + vi(�)� ed(xi; x);
where y is the income of the consumer, v0 is a �xed utility term derived from subscription

that is assumed to be high enough to guarantee full market coverage, vi(�) denotes the net
indirect utility from making calls and is discussed below, and where ed(xi; x) � 0 captures
the disutility of a consumer with the preferred characteristics x when subscribing to a

network with characteristics xi. We assume for simplicity that ed(xi; x) = d (jx� xij) with
d(0) = 0 and d0 > 0.

Subscription Contracts. Firms o¤er multi-part tari¤s and can discriminate between

on-net and o¤-net calls. As a result, consumers pay a tari¤ with the following structure:

Ti(qii; qij) = Fi + piiqii + pijqij;

where Fi is the �xed subscription fee that consumers pay to �rm i, pii and qii are the price

and quantity for on-net calls, e.g., in terms of minutes, and pij and qij are the respective

price and quantity for o¤-net calls from network i to network j 6= i. The level of consumer
surplus associated with the demand function qii(pii) is denoted as vii = v(pii) for calls

on-net, and similarly vij = v(pij) for calls o¤-net. This indirect utility function v(�) has
standard properties. In particular, it holds for the respective price p and quantity q that

dv=dp = �q. As in much of the literature, in what follows it will be convenient to stipulate
that this indirect utility is independent of the identities of the caller and recipient, though

the identity of the recipient of the call and its length, i.e., either qii or qij, in general will

di¤er.4

Local Calling Preferences. The novel ingredient in our model is that consumers di¤er

in their individual calling patterns. Denote by G(x00 j x0) the likelihood with which a
4With this simple tari¤ structure we can, as we show, go a long way in characterizing the equilibrium

even with general demand and calling patterns. In future work, the analysis could be extended to allow for
a menu of tari¤s (or, for a single non-linear tari¤), which would o¤er �rms more scope to price discriminate.
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consumer with preference (�address�) x0 will choose to call consumers x � x00. Depending
on whether the chosen recipient belongs to the same network or not, the respective call

minutes will then equal qii or qij. G(x00 j x0) is assumed to be absolutely continuous in x00

with density g(x00 j x0). We do not require that g(x00 j x0) > 0 for all x0; x00 2 X.
A weak assumption that ensures that, without further speci�cation of G(�), consumers

are more likely to call consumers with similar preferences is that G(x00 j x0) is ordered in
the sense of strict First-Order Stochastic Dominance: The higher is x0, the less likely is

the consumer to contact other consumers with a low address x00 and the more likely is the

consumer to contact other consumers with a high address. Formally, we thus stipulate

that, for all x 2 X; G(x j x0) is (weakly) decreasing in x0, while it is strictly decreasing for
a subset of X that has positive measure. Note again that this allows for the case with a

changing support of G(x j x0).5

We invoke also a symmetry assumption with respect to the local call preferences of

consumers closer to �rm 1 and consumers closer to �rm 2:

G(x00 j x0) = 1�G(1� x00 j 1� x0): (1)

This implies, in particular, that g(x00 j x0) = g(1�x00 j 1�x0) and symmetric call preferences
at x = 1=2: g(x00 j 1=2) = g(1� x00 j 1=2) and G(1=2 j 1=2) = 1=2.
A uniform calling pattern obtains when G (x j x0) = H (x) holds for all x and x0: The

probability that consumers to the left of location x are called is strictly proportional to

their number, and independent of the identity of the caller. As a result, at the network

level calling patterns will be balanced, i.e., the number of incoming and outgoing calls are

equal.

Market Game. At t = 1; �rms start by determining a reciprocal access charge. At

t = 2; they compete for consumers by simultaneously making o¤ers Ti(�). At t = 3;

consumers subscribe and place calls. At this stage, all payo¤s are realized.

In what follows, we analyze this game by backward induction. Section 3 solves for

�rms�optimal pricing policies, where we take market shares as given, such that the focus

5It should be noted that with this setup the choices of the distribution of consumers�preferences, H(x),
and that of the local calling patterns of each consumer, G(x00 j x0), are independent. As a consequence, if
for given x0 the area X 0 on which G(x00 j x0) puts �most of the mass�is not �densely populated�(in terms
of low probability mass of H(x) over X 0), then the likelihood with which a given subset of X 0 receives a
call is relatively high, compared to the case where the area X 0 is more �densely populated�.
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is on �rms�optimal price discrimination strategy for on-net and o¤-net calls. Section 4

solves for the equilibrium o¤ers, which determine equilibrium market shares. Finally, in

Section 5 we solve for the equilibrium access charge chosen by the �rms in the �rst stage.

Example. We conclude the description of the model with the speci�cation of a particu-

lar, tractable example. For this we suppose that consumers are uniformly distributed over

X: h(x) = 1 for all x 2 X. In addition, we specify that the local calling patterns take on
the following particular form. With probability 1� � a consumer calls someone in x 2 X
(uniformly) at random.

Let b 2 [0; 1] be the size of �calling clubs�. If the consumer has location b=2 � x0 � 1�
b=2, then with the residual probability � he calls only, though again randomly, consumers

with closer-by location x 2 N (x0) = [x0 � b=2; x0 + b=2]. In this example, � represents
how relevant the calling club is, while a smaller value of b indicates more concentrated

calling clubs. It remains to specify how consumers with x < b=2 or x > 1 � b=2 choose
their local calling partner (with probability �). It turns out that for our further analysis,

provided that b is not too large, this is inconsequential. To complete the speci�cation,

we thus presume that all consumers with x0 < b=2 will, with probability �, choose any

consumer x 2 N (x0) = [0; b] with equal probability, while those with x0 > 1� b=2 choose
any consumer x 2 N (x0) = [1� b; 1] with equal probability.
More formally, we have in this example

g (x j x0) = 1� �+ �
b
IN(x0) (x) ;

where IS (:) is the indicator function for the set S: If we let JS (x) =
R x
0
IS (y) dy, then

G (x j x0) = (1� �)x+ �
b
JN(x0) (x) : (2)

For x � x̂, calling patterns are then given by

G(x̂ j x) =
�
(1� �)x̂+ �

�
1
2
+ x̂�x

b

�
for x̂� b=2 � x � x̂

(1� �)x̂+ � for x < x̂� b=2 :

Clearly, this example obeys the �rst-order stochastic dominance criterion, since G(x̂ j x)
decreases in x for x̂� b=2 � x � x̂ and otherwise is constant.
For � = 0 we have g (x j x0) = 1 and G (x j x0) = x. In this case, the example reduces to

a standard uniform calling pattern as in Armstrong (1998), La¤ont et al. (1998a, 1998b)

or Gans and King (2001).
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Finally, for the example we specify that d(x) = �x > 0, where � is the unit transporta-

tion cost.

3 Pricing Structure

Utilities. As we will establish, in equilibrium �rm 1 serves all consumers x � x̂ and �rm
2 all consumers x � x̂. The marginal consumer x̂ is just indi¤erent between the two o¤ers.
Given x̂, for any consumer x the net utility from subscribing to �rm 1 is then given by

U1(x; x̂) = u1(x; x̂) + v0 � F1 � d(x)

with

u1(x; x̂) = G(x̂ j x)v(p11) + [1�G(x̂ j x)] v(p12):

If the consumer subscribes, instead, to network 2, then the respective utility equals

U2(x; x̂) = u2(x; x̂) + v0 � F2 � d(1� x);

with

u2(x; x̂) = [1�G(x̂ j x)] v(p22) +G(x̂ j x)v(p21):

Pro�ts and Surplus. Given the marginal consumer x̂ and a contract T1, from each

subscribing consumer at location x �rm 1 makes expected pro�ts equal to the sum of the

�xed part F1 plus the expected call charges

�1(x; x̂) = G(x̂ j x)q(p11)(p11 � c11) + [1�G(x̂ j x)] q(p12)(p12 � c12) (3)

plus the expected access revenues

R12(x; x̂) = (a� c0)q(p21)
Z 1

x̂

g(x j x0)
h(x)

dH(x0):

We can thus write the total expected pro�ts that �rm 1 obtains from a given consumer at

location x as

�1(x; x̂) = �1(x; x̂) + F1 +R12(x; x̂)� f:

For given cuto¤ x̂; �rm 1 thus obtains the total expected pro�ts

�1 (x̂) =

Z x̂

0

�1(x; x̂)dH(x): (4)
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It is useful for what follows to express the joint surplus that �rm 1 realizes with a given

consumer by

!1(x; x̂) = v0 � d(x) + u1(x; x̂) + �1(x; x̂) +R12(x; x̂)� f: (5)

The respective de�nitions for �rm 2 are symmetric:

�2(x; x̂) = [1�G(x̂ j x)] q(p22)(p22 � c22) +G(x̂ j x)q(p21)(p21 � c22);

R21(x; x̂) = (a� c0)q(p12)
Z x̂

0

g(x j x0)
h(x)

dH(x0);

�2(x; x̂) = �2(x; x̂) + F2 +R21(x; x̂)� f;

�2 (x̂) =

Z 1

x̂

�2(x; x̂)dH(x);

!2(x; x̂) = v0 � d(1� x) + u2(x; x̂) + �2(x; x̂) +R21(x; x̂)� f:

3.1 Optimal Price Discrimination

In this Section, we take the �rms�market shares �1 = H(x̂) and �2 = 1�H(x̂), and thus
the cuto¤ x̂, as given. We consider the �rms�program to optimally choose on- and o¤-net

prices so as to maximize pro�ts.

More precisely, we consider the following program. We take as given the gross utility

level that the marginal consumer must obtain: U1(x̂; x̂) � U . (In equilibrium, this will be
given from the o¤er of the competing �rm, such that U = U2(x̂; x̂).) For given x̂ and U we

then solve for the optimal choices p11 and p22 to maximize �1. We relax this program by

only considering the participation constraint of the marginal consumer x = x̂ but not that

of consumers x � x̂. Further below we impose su¢ cient conditions for when (both on and
o¤ equilibrium) the solution to the relaxed program is indeed a solution to the original

one.

To characterize the optimal prices, it is convenient to introduce the elasticity (of per-

minute demand) �(p) = � q0(p)p
q(p)

> 1. Furthermore, to ensure that the �rm�s program has a

unique solution, a su¢ cient condition is that the demand function satis�es q00 < 0 (where

q > 0). In what follows, we assume that this holds.

Proposition 1 For given market share �1 = H(x̂) and given utility of the marginal con-

sumer U1(x̂; x̂) � U , the optimal on- and o¤-net prices of �rm 1 under localized calling
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patterns, solving the (relaxed) program, satisfy

p11 � c11
p11

=
1

�(p11)

"R x̂
0
[G(x̂ j x)�G(x̂ j x̂)] dH(x)R x̂

0
G(x̂ j x)dH(x)

#
� 0 (6)

and
p12 � c12
p12

= � 1

�(p12)

"R x̂
0
[G(x̂ j x)�G(x̂ j x̂)] dH(x)R x̂
0
[1�G(x̂ j x)] dH(x)

#
� 0. (7)

Likewise, the symmetric program for �rm 2 yields

p22 � c22
p22

=
1

�(p22)

"R 1
x̂
[G(x̂ j x̂)�G(x̂ j x)] dH(x)R 1
x̂
[1�G(x̂ j x)] dH(x)

#
� 0 (8)

and
p21 � c21
p21

= � 1

�(p21)

"R 1
x̂
[G(x̂ j x)�G(x̂ j x̂)] dH(x)R 1

x̂
G(x̂ j x)dH(x)

#
� 0. (9)

Proof. See Appendix.

Note that with a uniform calling pattern, when G (x̂ j x) = H (x̂), we have pij = cij in
all four cases, i.e., the standard marginal cost pricing result. The intuition for why with a

skewed calling pattern marginal prices are above marginal cost for on-net calls and below

marginal cost for o¤-net calls is the following: Both prices, say p12 and p11 for �rm 1,

serve as metering devices. Higher on-net prices extract more of the �information rent�for

customers that have a stronger preference for �rm 1 than the marginal customer, x̂. On

the other hand, this distortion in on-net prices reduces the joint surplus !1(x̂; x̂), which is

then shored up by decreasing p12 accordingly.

Importantly, note that pii > cii and pij < cij do not imply that o¤-net calls are cheaper

than on-net calls, given that the relation of the respective costs, cii and cij, depends also

on the endogenous access charge. We will return to this below after having solved for the

equilibrium access charge.

Note also that with symmetry, i.e., if the marginal consumer is located at x̂ = 1=2,

the prevailing marginal prices p11 = p22 = pii and p12 = p21 = pij are obtained simply

from substitution of x̂ = 1=2 into Proposition 1 and using symmetry of H(x) and G(�) (cf.
condition (1)). For what follows, it is convenient to adopt a more concise notation. Let

� =

Z 1

1=2

G(
1

2
j x)dH(x) =

Z 1=2

0

�
1�G(1

2
j x)
�
dH (x) ;
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where the second equality follows from symmetry. Note that � is the share of total calls

that are made o¤-net to an individual network in a symmetric equilibrium. With a uniform

calling pattern, it is

� =

Z 1=2

0

�
1�H

�
1

2

��
dH (x) =

1

4
;

while when the calling pattern is skewed then � < 1=4, i.e., more calls are made on-net

than o¤-net.

In a symmetric equilibrium, on- and o¤-net prices in Proposition 1 simplify to

pii � cii
pii

=
1

�(pii)

1=4� �
1=2� � ;

pij � cij
pij

= � 1

�(pij)

1=4� �
�

;

which indeed results in marginal-cost pricing if and only if � = 1=4.

Finally, we comment on our restriction to only consider the participation constraint at

the marginal type x̂. The proof of Proposition 1 derives a su¢ cient condition for when the

solution to the relaxed programme is a solution to the original problem. Focusing, given

symmetry, on the condition for the program of �rm i = 2, this su¢ cient condition is that

for all x � bx it is true that
@G(x̂ j x)
@x

[v(p11)� v(p12) + v(p22)� v(p21)] < d0(x) + d0(1� x), (10)

which at the symmetric equilibrium outcome simpli�es to

[v(pii)� v(pij)]
@G(1=2 j x)

@x
<
d0(x) + d0(1� x)

2
. (11)

Recall that @G(1=2jx)
@x

is negative, and therefore if pii � pij the condition above certainly
holds. In the example, where d0(x) = � , condition (11) and, more generally, condition (10)

are surely satis�ed whenever � is not too low.6 In what follows, we stipulate that this is

the case. The joint assumption that the level of horizontal di¤erentiation, as captured by

d0 > 0 or, more speci�cally, � > 0 and v0 are both not too low, ensuring full coverage, is

also typically invoked in the literature (e.g., La¤ont et al., 1998b).

6Recall also that with a uniform calling pattern it holds that @G(x
0jx)

@x = 0, such that the left-hand side
in either condition is equal to zero.
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Optimal Uniform Price. It seems useful to derive brie�y the optimal uniform prices,

i.e., the equilibrium in the case where networks do not price discriminate between on- and

o¤-net calls. Note that in this case, given the uniform price pi, each customer independently

of his location realizes the utility (gross of fees) v(pi) at the respective network i.

Proposition 2 When �rms are constrained to charge a uniform price pi, then this is

optimally set equal to the �average marginal cost�, i.e.,

p1 = cii + (a� c0)
Z x̂

0

[1�G(x̂ j x)] h(x)
H(x̂)

dx; (12)

p2 = cii + (a� c0)
Z 1

x̂

G(x̂ j x) h(x)

1�H(x̂)dx:

Proof. See Appendix.

The above prices consist of the on-net cost plus the termination surcharge on the

average number of o¤-net calls for the network�s customers. Therefore these prices are

clearly equal to perceived marginal cost, given the calling pattern of an average consumer

of either network.

In a symmetric equilibrium, we obtain

p1 = p2 = cii + 2�(a� c0): (13)

Therefore, skewed calling patterns lead to lower uniform prices due to their larger on-net

share of calls.

3.2 Example

We now apply Proposition 1 to the example. For this note �rst that �1 = x̂ and �2 = 1�x̂.
We also restrict consideration to the case where b=2 � x̂ � 1� b=2.

Proposition 3 In the linear example, on-net and o¤-net prices, as characterized in Propo-

sition 1, satisfy for �rm 1

p11 � c11
p11

=
1

�(p11)

�

2

x̂� b
4

(1� �)x̂2 + �
�
x̂� 1

8
b
� ;

p12 � c12
p12

= � 1

�(p12)

�

2

x̂� b
4

x̂�
�
(1� �)x̂2 + �

�
x̂� 1

8
b
�� ;
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and for �rm 2

p22 � c22
p22

=
1

�(p22)

�

2

1� x̂� b
4

(1� �) (1� x̂)2 + �
�
1� x̂� 1

8
b
� ;

p21 � c21
p21

= � 1

�(p21)

�

2

1� x̂� b
4

(1� x̂)�
�
(1� �)(1� x̂)2 + �

�
1� x̂� 1

8
b
�� :

Proof. See Appendix.

For a discussion of the characterization in Proposition 3 it is convenient to take the

symmetric case, where x̂ = 1=2, such that

pii � cii
pii

=
1

�(pii)

"
�
�
1� b

2

�
1 + �

�
1� b

2

�# ;
pij � cij
pij

= � 1

�(pij)

"
�
�
1� b

2

�
1� �

�
1� b

2

�# :
In both cases, the last term is zero at � = 0. With uniform calling patterns, marginal

prices are not distorted. Further, in both cases, the respective term in rectangular brackets

is strictly increasing in �. In addition, when � > 0, it is strictly decreasing in b. Hence,

prices become more distorted the more relevant the �club� is, and the more (locally)

skewed customers�calling preferences become.

4 Equilibrium

We now determine the market equilibrium for given access charge a. Throughout the

subsequent analysis we assume existence of a unique equilibrium in pure strategies. This

equilibrium will then be symmetric with x̂ = 1=2.

4.1 First-Order Condition

Now that we have derived p11 and p12 as functions of x̂, we will derive �rm 1�s pro�t-

maximizing market share. Firm 1�s �xed fee F1 is de�ned by the condition that the

marginal consumer must be indi¤erent between the o¤ers of the two �rms, i.e., U1 (x̂; x̂) =

U2 (x̂; x̂), with

F1 = u1(x̂; x̂)� u2(x̂; x̂) + d(1� x̂)� d(x̂) + F2

13



and thus
dF1
dx̂

=
d

dx̂
(u1(x̂; x̂)� u2(x̂; x̂))� d0(x̂)� d0(1� x̂):

Taking into account this dependence of F1 on market share x̂, together with the envelope

theorem with respect to p11 and p12, the maximization of pro�ts

�1 (x̂) =

Z x̂

0

[�1(x; x̂) + F1 +R12(x; x̂)� f ] dH(x)

over x̂ leads to the following �rst-order condition:

d��1(x̂)

dx̂
=

Z x̂

0

�
@�1(x; x̂)

@x̂
+
@R12(x; x̂)

@x̂

�
dH(x) (14)

+(!1(x̂; x̂)� U1(x̂; x̂))h(x̂)

+H (x̂)
dF1
dx̂
:

Here, the �rst term captures the resulting change in call and termination pro�ts per

(inframarginal) customer; the second term captures the change in value of the marginal

customer (and thus the gain or loss of their resulting pro�ts !1(x̂; x̂)� U1(x̂; x̂)); and the
third term captures the change in the �xed fee obtained from inframarginal customers.7

It is convenient to refer to the these three terms as CPC (�change in call and termination

pro�ts per consumer�, CNC (�change in the number of consumers�), and CFI (�change in

the rent of infra-marginal consumers�). We are interested in a symmetric equilibrium and,

therefore, restrict the exposition to the equilibrium outcome with symmetry, x̂ = 1=2. We

then �nd

CPC = (rii � rij)
Z 1=2

0

g(
1

2
j x)dH (x)� 1

2
tijh(

1

2
)

=

�
(rii � rij) 
 �

1

2
tij

�
h(
1

2
);

where we use rij := q(pij)(pij � cij), tij := (a� c0)q(pji), and


 :=
1

h(1=2)

Z 1=2

0

g(
1

2
j x)dH (x) :

Intuitively, as customers with location x̂ = 1=2 switch to network 1, the calls from cus-

tomers x < x̂ to x̂ = 1=2 become on-net instead of o¤-net calls, which results in a pro�t

di¤erence of rii � rij. In addition, access charges that would otherwise be earned from all

x < x̂ who are called by x̂ = 1=2 are now lost.

7Note that the second and third terms together constitute the standard price-vs-quantity trade-o¤.
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As 2
 denotes the probability with which any customer located at 1=2 will be called

in equilibrium, when calling patterns are balanced, it must hold that 
 = 1=2.

Next, using that u1(12 ;
1
2
) = u2(

1
2
; 1
2
), we have

CNC =

�
�1(
1

2
;
1

2
) +R12(

1

2
;
1

2
) + F � f

�
h(
1

2
)

=

�
1

2
(rii + rij) + tij

Z 1

1=2

g(1
2
j x)

h(1
2
)
dH(x) + F � f

�
h(
1

2
):

As, by symmetry, Z 1

1=2

g(
1

2
j x)dH(x) =

Z 1=2

0

g(
1

2
j x)dH (x) = 
h(1

2
);

this becomes

CNC =

�
1

2
(rii + rij) + 
tij + F � f

�
h(
1

2
):

Finally, making use of dF1=dx̂ as mentioned above, we have at x̂ = 1=2 that

CFI = � (vii � vij)h(
1

2
)� d0(1

2
);

where we have de�ned

� :=
1

h(1=2)

"
g(
1

2
j 1
2
) +

@G(1=2 j x)
@x

����
x=1=2

#
:

Also � has an intuitive interpretation. Expressed in terms of partial derivatives, the

term in rectangular brackets is equal to G1(1=2 j 1=2) + G2(1=2 j 1=2). Here, G1(1=2 j
1=2)=h(1=2) captures the �local skewness�of the calling pattern of the marginal customer,

which is equal to one under a uniform calling pattern and strictly larger otherwise. Instead,

G2(1=2 j 1=2) captures how calling patterns between customers di¤er at 1=2. With a

uniform calling pattern we clearly have that G2(1=2 j 1=2) = 0; while it is a negative term
for skewed distributions. As we elaborate below in more detail in the example, both terms

G1(1=2 j 1=2) and G2(1=2 j 1=2) are jointly in�uenced when, across all customers, the
calling pattern becomes more skewed.

Summing up, using the newly introduced parameters, the �rst-order condition that

CPC + CNC + CFI = 0 thus becomes�
(rii � rij) 
 �

1

2
tij

�
h(
1

2
)

+

�
1

2
(rii + rij) + 
tij + F � f

�
h(
1

2
)

+� (vii � vij)h(
1

2
)� d0(1

2
) = 0:
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Symmetric Fixed Fee. Solving this condition for F leads to the following intermediary

result.

Proposition 4 In a symmetric equilibrium, �xed fees are equal to

F = f +
d0(1=2)

h(1=2)
�
�
1

2
+ 


�
rii �

�
1

2
� 

�
(rij � tij)� � (vii � vij) : (15)

It is useful to note that when the calling pattern is balanced, at least at the marginal

customer, such that 
 = 1=2, then expression (15) simpli�es to

F = f +
d0(1=2)

h(1=2)
� rii � � (vii � vij) : (16)

Finally, a further simpli�cation is obtained when the calling pattern is uniform, such that

also � = 1 and we thus have that

F = f +
d0(1=2)

h(1=2)
� rii � (vii � vij) : (17)

We return to these expressions later. When the calling pattern is balanced (but not

necessarily uniform), inspection of (16) reveals that the access charge has a feedback e¤ect

on the �xed fee only through the o¤-net indirect utility, vij, as this depends on the o¤-net

price pij. This is frequently referred to as a �waterbed e¤ect�. It is important to stress

that the magnitude of this waterbed e¤ect is diluted by the factor � which is 1 only when

the calling pattern is uniform. When instead the calling pattern becomes more skewed,

then � decreases and the feedback e¤ect of a change in the access charge will be much

diluted.

Example. In our example, after substituting the simpli�ed values for 
 and � = 1 � �
in (15), or also in (16) as incoming and outgoing calls are balanced at each customer, we

obtain

F = f + d0(
1

2
)� rii � (1� �) (vii � vij) :

Note here that when consumers make only local calls (� = 1), then the �xed fee is inde-

pendent of the access charge, such that there is no �waterbed e¤ect�on the �xed fee. The

access charge will obviously always have an e¤ect on o¤-net charges though. Recalling

from Proposition 3 the expression for the o¤-net price, pij�cij
pij

= � 1
�(pij)

�(1� b
2)

1��(1� b
2)
; we obtain

immediately the following result.
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Proposition 5 In the example, in a symmetric equilibrium and for a constant elasticity

demand, we have for the "waterbed e¤ect":

dpij
da

=

�
1� �

�
1� b

2

��
�

� � �
�
1� b

2

�
(� � 1)

> 0;

dF

da
= �(1� �)q(pij)

dpij
da

� 0;

such that the bill of the "marginal" customer at x̂ = 1=2 always decreases with an increase

of the access charge:
d (F + pijqij(pij) =2)

da
< 0:

Proof. See Appendix.

As calls are priced in the elastic portion of the demand function, an increase in the o¤-

net price due to an increase of the access charge will always cause o¤-net call expenditure

to decrease. The waterbed e¤ect on the �xed fee goes in the same direction to reduce the

total bill. This e¤ect disappears when most calls are made to the calling club (� ! 1),

while the o¤-net impact of an increase of the access charge is always present. With skewed

calling patterns, though, the impact on the bill of the marginal consumer does not coincide

with the impact on the bill of inframarginal consumers. Thus we study next the optimal

choice of the access charge when consumers have skewed calling patterns.

4.2 Equilibrium Pro�ts

Substituting the symmetric equilibrium fee into pro�ts, we obtain the following:

Proposition 6 Pro�ts in a symmetric equilibrium are ��1
�
1
2

�
= ��2

�
1
2

�
= ���, with

��� =
d0 (1=2)

2h(1=2)
+
�

2
(vij � vii) +

�
� +




2
� 1
4

�
(rij + tij � rii) +

�
1

2
� 

�
tij: (18)

Proof. See Appendix.

Equilibrium pro�ts thus depend, in general, on the following terms. The �rst term cap-

tures the way pro�ts depend on the substitutability of goods and the density for marginal

consumers
d0( 12)
2h( 1

2
)
. The second term �

2
(vij � vii) is related to price-generated network exter-

nalities as perceived by customers. The third term, re�ects the extent to which revenues

17



from calls and termination (rij + tij � rii) are passed back to customers. Finally, the last
term

�
1
2
� 

�
depends on whether calling patterns are balanced at the marginal customer.

If the calling pattern is balanced, i.e., 
 = 1
2
; expression (18) simpli�es to

��� =
d0 (1=2)

2h(1=2)
+
�

2
(vij � vii) + � (rij + tij � rii) : (19)

With a uniform calling pattern, � = 1=4 and � = 1; this further reduces to

��� =
d0 (1=2)

2h(1=2)
+
1

2
(vij � vii) +

1

4
(rij + tij � rii) : (20)

5 Access Charge

In this section we determine the jointly pro�t-maximizing access charge under price dis-

crimination between on- and o¤-net calls. Taking into account only the o¤-net terms that

depend on a in (18), and noting that, given symmetry and thus pij = pji,

rij + tij = q(pij)(pij � c1 � 2c0) = q(pij)(pij � cii);

the jointly pro�t-maximizing access charges are found by solving

max
pij

�
�

2
v (pij) +

�
� +




2
� 1
4

�
(pij � cii) q (pij) +

�
1

2
� 

�
(a� c0) q (pij)

�
: (21)

This obtains the following characterization:

Proposition 7 The jointly pro�t-maximizing access charge is given by

a = c0 + cii

 �
2� + 
 � 1

2

�
1
4�
� ��

2� + 
 � 1
2

�
(�(pij)� 1) + �

!
: (22)

Proof. See Appendix.

Recall that for the network that initiates but does not terminate a call, economic

marginal cost are equal to "perceived" marginal cost only when a = c0, i.e., only when the

term in brackets in (22) is equal to zero.

Before returning to the example, expression (22) also allows to obtain some general

insights. For this it is, however, convenient to restrict attention to the case where the

calling pattern is balanced at least at x = 1=2. That is, with 
 = 1=2 the marginal

customer at x = 1=2 makes and receives the same number of calls. Further, suppose that

18



the elasticity is constant (or, likewise, that we can momentarily ignore changes in the

elasticity as they are su¢ ciently small). Then, (22) becomes

a = c0 + cii

�
1=2� �

2� (� � 1) + �

�
: (23)

With a uniform calling pattern, we had � = 1=4 next to � = 1, implying that

a = c0 � cii
1

� + 1
:

As noted in the Introduction, this is just a restatement of the result in Gans and King

(2001). As is argued there, when calling patterns are uniform, �rms can dampen com-

petition and, thereby, increase joint pro�ts by setting the reciprocal access charge below

economic cost of connection.

Further, as long as � � 0, we have that the access charge lies below economic cost

whenever � > 1=2, while the opposite holds when � < 1=2. In our example we make

precise how this case arises if and only if calling patterns are su¢ ciently skewed. Again,

the driving force is here is to dampen competition, albeit now this is done through setting

the price above economic cost. This is a "standard" result for competition in non-network

industries, e.g., when we consider two �rms that can, through a two-part tari¤, licence

access to some essential inputs: Setting the �now reciprocal and linear �"wholesale" price

above cost dampens competition.

Concentrating on the case of balanced calling patterns (
 = 1=2), the solution comes

from simplifying expression (21) to

max
pij

n�
2
v (pij) + � (pij � cii) q (pij)

o
Whether the jointly pro�t-maximizing o¤-net price is above or below the true marginal

cost cii depends on whether the "weight"
�
2
on consumer call surplus is smaller or larger

than the "weight" on call pro�ts �. Again, with a uniform calling pattern (i.e., as in

Gans and King, 2001), the corresponding weights are 1=2 and 1=4, resulting � as we have

already observed � in o¤-net prices below marginal cost. In general, if the weight on vij

is larger than the weight on rij + tij = (pij � cii) q (pij), then pij will be lower than socially
optimal, i.e., below cii. This is achieved through a < c0. Otherwise the access charge will

be set above cost.
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Example. In our example, the pro�t-maximizing access charge can be readily obtained

as

a = c0 �
2 (1� 2�) cii

2 (1� �) (1 + �) + �b (� � 1) : (24)

This expression is strictly increasing in �: It takes its lowest value with uniform calling

pattern (� = 0), in which case we obviously obtain again the below-cost result that a =

c0 � cii
�+1
. The access charge then increases, and it is endogenously set at cost, a = c0, if

and only if � = 1=2. When calls are only made to the local calling club (� = 1), the access

charge then takes its highest value a = c0 +
2cii
b(��1) > c0. Also, for a given proportion �

of calls to a calling club, the lower is b (i.e., the more concentrated the calling club is)

the higher is the access charge. (When calls are only to calling clubs, i.e.., � = 1, and in

addition, b ! 0, then we can perform the same limit analysis as we did, more generally,

above.)

While with no calling clubs the o¤-net price turns out to be cheaper by the on-net

price because the access charge is chosen below cost, this is not necessarily true with

the presence of local calling clubs. When � = 1, the o¤-net price is actually set at the

monopoly level, which is therefore higher than the on-net price. This is achieved by setting

an access charge well above cost.

In general, by substituting (24) into the expressions for the on-net and o¤-net mark-ups

obtained in Section 3, we get

pii =
�cii

� � (2�b)�
2(1+�)�b�

;

pij =
�cii

� + 2(1��)�b�
2(1��)+b�

:

It is then the case that, at the equilibrium access charge, o¤-net prices are higher than

on-net prices when

pii > pij =) � > �� =
2� 3b+

p
36� 28b+ 9b2

4(2� b) ;

i.e., when a signi�cant portion of calls are placed to the local "calling club". It is thus

key to have a su¢ ciently relevant "calling club" to generate this result, which instead in

absent in the received literature with uniform calling patterns.

Equivalently, the condition for o¤-net prices to be higher than on-net prices can also

be written as

pii > pij =) b > b� =
2(1 + �� 2�2)
�(3� 2�) :
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This way of expressing the condition may seem a bit surprising at �rst sight, since,

for a given proportion � of calls to a "calling club", we need the club to be not "too"

concentrated. This result, though, is understood by noting that b plays two roles. On the

one hand, as shown by (24), the tighter the club the higher the access charge, which tends

to raise the o¤-net price directly. On the other hand, we must recall from Proposition

3 that b also plays a role in the metering problem: For a given a, the on-net mark up

increases and, at the same time, the o¤-net mark-up decreases the more concentrated the

club becomes. Thus, if the club is "too" concentrated, the o¤-net negative mark-up will

more than compensate for the high access charge compared to on-net calls.

6 Conclusion

We introduce a �exible model of network competition that allows for non-uniform calling

patterns. The model allows us to analyze, both generally and in a tractable example, the

implications of skewed calling patterns (�calling clubs�) on o¤- and on-net prices, as well

as equilibrium reciprocal access charges.

This extension is particularly relevant to capture the empirical observation that con-

sumers seem to have non-uniform calling patterns as they call much more selected num-

bers.8 This in turn generates results that are close to stylized facts, namely we can explain

8Take, for instance, the following data for Italy, where there are four mobile operators (source: AGCOM,
2008)

TIM Vodafone Wind H3G
Sub (000s) 29,450 27,595 16,202 7,922
Mkt share (%) 0.36 0.34 0.20 0.10
Calls on net (millions) 19,795 25,025 16,831 2,050
Calls o¤ net (millions) 8,518 7,211 4,001 4,100
Calls on net (%) 0.70 0.78 0.81 0.33
Calls o¤ net (%) 0.30 0.22 0.19 0.67
Imbalance ratio 4.08 6.74 16.87 4.62

The numbers above refer only to mobile-to-mobile calls, while calls to �xed lines have been removed.
If on- and o¤-net prices were identical, and if calls were made proportional to market shares, then calling
patterns would be uniform, and the �imbalance�ratio would be 1. The customers of TIM, for instance,
should make 36% of their mobile calls on net, and 64% o¤ net. Instead the percentages are 70% and
30% respectively, making an on-net call 4.08 times more likely than an o¤-net call. Of course this is a
crude aggregate measure, since we do not have information on prices and individual behavior, but it is
important to recall that in Gans and King (2001), for instance, the o¤-net calls should cheaper than on-net
calls resulting in an imbalance ratio below 1. It is also quite di¢ cult to reconcile the imbalance ratios
above with a story purely based on on-net prices cheaper than o¤-net prices (but still within uniform
calling patterns), as the call demand elasticities would have to take implausibly large values. Instead,
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why access charges are set above cost, which, in turn, can generate o¤-net prices more

expensive than on-net prices.

In this work, we have taken local �calling clubs� as exogenous. Endogenizing their

formation represents a relevant next step to be investigated in future research.

7 Appendix: Omitted Proofs

Proof of Proposition 1. Given constant market shares, �rm 1�s �xed fees are determined

by the condition U1 (x̂; x̂) = �U , i.e., F1 = u1(x̂; x̂) + v0� d(x̂)� �U . Substituting these into

�rm 1�s pro�ts leads to

�1 (x̂) =

Z x̂

0

[�1(x; x̂) + F1 +R12(x; x̂)� f ] dH(x)

=

Z x̂

0

[�1(x; x̂) + u1(x̂; x̂)] dH(x) + const;

where the last term on the right-hand side does not depend on p11 and p12. After substi-

tuting for u1 and �1, we obtain from the maximization of the relevant termsZ x̂

0

[G(x̂ j x)q(p11)(p11 � c11) +G(x̂ j x̂)v(p11)] dH(x)

with respect to p11 the �rst-order condition

q0(p11)(p11 � c11)
Z x̂

0

G(x̂ j x)dH(x) + q11
Z x̂

0

[G(x̂ j x)�G(x̂ j x̂)] dH(x) = 0;

which solves to (6). Proceeding analogously for p12 yields (7), which completes the char-

acterization for �rm 1. The respective characterization for �rm 2, (8) and (9), is perfectly

symmetric.

We �nally check when it is indeed feasible to ignore the participation constraint of all

customers with location x < x̂, i.e., when indeed, as presumed in the relaxed program,

U1(x; x̂) � U2(x; x̂). We have

U1(x; x̂)� U2(x; x̂) = [u1(x; x̂)� u2(x; x̂)]� [d(x)� d(1� x)]� [F1 � F2] ;

where

u1(x; x̂)� u2(x; x̂) = fG(x̂ j x)v(p11) + [1�G(x̂ j x)] v(p12)g

�f[1�G(x̂ j x)] v(p22) +G(x̂ j x)v(p21)g :
a combination of on-net prices cheaper than o¤-net, and skewed calling patterns due to "calling clubs"
seems to have quite a realistic appeal.
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In case of symmetry, this becomes

u1(x; 1=2)� u2(x; 1=2) = [v(pii)� v(pij)] [2G(1=2 j x)� 1] :

A su¢ cient condition for U1(x; x̂) > U2(x; x̂) holding strictly for all x < x̂ is that

@

@x
[U1(x; x̂)� U2(x; x̂)] < 0;

which generally holds when

@G(x̂ j x)
@x

[v(p11)� v(p12) + v(p22)� v(p21)] < d0(x) + d0(1� x). (25)

(Cf. also the further discussion in the main text following the Proposition.) Q.E.D.

Proof of Proposition 2. We have, as in the proof of Proposition 1, that

�1 (x̂) =

Z x̂

0

[�1(x; x̂) + u1(x̂; x̂)] dH(x) + const:

With uniform prices, i.e., p1 := p11 = p12, we have u1(x̂; x̂) = v(p1) and

�1(x; x̂) = q(p1)(p1 � [G(x̂ j x)c11 + [1�G(x̂ j x)] c12])

= q(p1) (p1 � c1(x; x̂)) ;

with

c1(x; x̂) = c11 + [1�G(x̂ j x)] (a� c0)

(and likewise for �rm 2). The problem of �rm 1 is thus to choose p1 to maximize

�1 (x̂) =

Z x̂

0

[q(p1) (p1 � c1(x; x̂)) + v(p1)] dH(x) + const;

which has the unique solution (12). Q.E.D.

Proof of Proposition 3. For x � x̂, we have from (2) that local calling patterns are

given by

G(x̂ j x) =
�
(1� �)x̂+ �

�
1
2
+ x̂�x

b

�
for x̂� b=2 � x � x̂

(1� �)x̂+ � for x < x̂� b=2 :

Note also that G(x̂ j x̂) = (1� �) x̂+ �1
2
. We thus have thatZ x̂

0

G(x̂ j x)dH(x) = (1� �)x̂2 + �
�
x̂� 1

8
b

�
:
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Next, we have, after some transformations,Z x̂

0

[G(x̂ j x)�G(x̂ j x̂)] dH(x) = �

2

�
x̂� b

4

�
,

which with symmetry simpli�es to �
4

�
1� b

2

�
:With these preliminary calculations at hand,

the characterization for p11 follows from application of Proposition 1.

Next, for the calculation of p12, note that
R x̂
0
[1�G(x̂ j x)] dH(x) = H(x̂) �

R x̂
0
G(x̂ j

x)dH(x). Again, the characterization for p12 follows then simply from application of

Proposition 1. The same holds for p21 and p22. Q.E.D.

Proof of Proposition 5. Recall from Proposition 3 the expression for the o¤-net

price, pij�cij
pij

= � 1
�(pij)

�(1� b
2)

1��(1� b
2)
: Recalling that cij = c1 + c0 + a, it is thus

dpij
da

=

�
1� �

�
1� b

2

��
�

� � �
�
1� b

2

�
(� � 1)

> 0;

dF

da
= �(1� �)v0(pij)

dpij
da

= (1� �)q(pij)
dpij
da

< 0:

The marginal consumer located at 1/2 makes exactly 1/2 of the calls o¤-net. The parts

of the bill that may be a¤ected by a change in a are therefore equal to F + pijqij(pij)=2,

with:
d (F + pijqij(pij) =2)

da
=
�
�
1� �

�
1� b

2

��
(� + 1� 2�)�qij(pij)

2
�
� � �

�
1� b

2

�
(� � 1)

� < 0:

Q.E.D.

Proof of Proposition 6. We have

��1

�
1

2

�
=

Z 1
2

0

�
�1(x;

1

2
) +R12(x;

1

2
)

�
dH(x) +

1

2
(F � f)

=

Z 1
2

0

�
G(
1

2
j x)r11 +

�
1�G(1

2
j x)
�
r12

�
dH(x)

+tij

Z 1=2

0

Z 1

1=2

g(x j x0)
h(x)

dH(x0)dH (x) +
1

2
(F � f) :

This simpli�es to

��1

�
1

2

�
=

�
1

2
� �

�
rii + � (rij + tij) +

1

2
(F � f)

=
d0
�
1
2

�
2h(1

2
)
+
�

2
(vij � vii) +

�
� +




2
� 1
4

�
(rij + tij � rii) +

�
1

2
� 

�
tij:
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Q.E.D.

Proof of Proposition 7. Starting from (21), the resulting FOC is�
��
2
q (pij) +

�
� +




2
� 1
4

�
[q (pij) + (pij � cii) q0]

�
dpij
da
+

�
1

2
� 

��
q (pij) + (a� c0) q0

dpij
da

�
:

Assuming constant elasticity demand, we can deduce from (7) that

pij = cij
��

1=4 + (� � 1) � ;
dpij
da

=
��

1=4 + (� � 1) � :

Now, substuting also cij = cii + (a� c0) and q0 = ��q (pij) =pij in the FOC above which
�nally solves for (22). Q.E.D.
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