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Abstract

This paper presents a model of competition between an arbitrary
number of telecommunications networks, in the presence of tariff-
mediated network externalities, call externalities, and cost and surplus
asymmetries. We determine the Nash equilibria in linear and two-part
tariffs, provide an appropriate stability criterium, and show how the
model can be calibrated to existing market outcomes. As an appli-
cation, we reconsider the setting of mobile termination rates for calls
from the fixed network, and between mobile networks, in the presence
of many asymmetric networks.
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1 Introduction

Two great obstacles of applying models of telecommunications competition
to real-world markets are that most either assume symmetric firms and / or
consider a duopoly. To our knowledge, there are few or no realistic cases that
can be portrayed as a symmetric duopoly, since most telecommunications
markets are characterized either by at least three firms which have entered
at different points in time, as in mobile telephony, or by one large incumbent
and several smaller rivals using different technologies, as is often the case in
fixed telephony. One reason for the assumptions of symmetry and duopoly
that is usually advanced is that models with several asymmetric networks
are not tractable. Here we attempt to show otherwise.

While a series of recent papers has presented models of network compe-
tition with more than two networks, as listed below, all either have assumed
symmetry or have not been able to give closed-form solutions for the equilib-
rium. In this paper we set out to develop and solve a rather general model
of competition between interconnected telecommunications networks. As in
Hoernig (2007 ) for two networks, there are tariff-mediated network exter-
nalities, i.e. networks price discriminate between on- and off-net calls, and
call externalities, i.e. receiving calls conveys utility, and networks can be
asymmetric in size. Still, we go beyond the scope of that paper by allowing
for an arbitrary number of networks and asymmetries in network and per-
customer fixed costs. While being at the centre of the ongoing debate about
the regulation of mobile termination rates (MTRs) in the European Union,
cost differences seem to have been largely ignored in the economic literature
on network competition.

We show how to set up and solve network competition models with many
asymmetric firms, both for competition in linear and two-part tariffs. The
model and most of the calculations are rendered in matrix notation, exploit-
ing maximally the underlying quadratic functional form of profits and the
linearity of the demand structure. This vastly reduces the complexity of the
derivations and leads to equilibrium conditions in the form of one-liners.

As a first step, we propose a generalization of the condition of stability
in expectations introduced by Laffont, Rey and Tirole (1998b) to multiple
networks. Effectively, it imposes an upper limit on the intensity of prefer-
ences, as a function of tariff-mediated network externalities. This stability
condition assumes that networks compete in prices, but is independent of
whether networks compete in linear or two-part tariffs.

We then derive the socially optimal prices and market shares in the pres-
ence of asymmetric cost and perceived consumer surplus. As expected, effi-
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cient prices reflect the true costs of origination and termination on the origi-
nating and terminating networks, respectively. Our main finding concerning
market shares is that the socially optimal outcome can be implemented by
setting fixed fees that reflect exactly the differences in fixed cost (net of
fixed-to-mobile termination profits), if and only if network usage costs are
symmetric. With cost differences, these fixed fees must be corrected for the
effects of differing retail prices.

In the main part of the paper, we derive the Nash equilibria in the price
competition games with linear and two-part tariffs. As concerns off-net
prices, we allow networks to set a uniform off-net price to all other net-
works, or to set different prices to groups of other networks. With linear
tariffs, we show that the condition in Hoernig (2007) which links the level of
the off-net price to the level of the on-net price in the case of two networks,
continues to hold “on average” in the case of many networks. If there is a
uniform off-net price to all competing networks then this price is set based
on average perceived off-net cost.

With two-part tariffs, we show that identical off-net prices to a group
of competing networks are set based on average perceived off-net cost, and
as if all competitors had the same average market share as the members
of this group. Rather unsurprisingly, the on-net prices continue to be set
at the efficient levels independently of cost asymmetries and the number of
networks.

For the case of two-part tariffs we show how to calibrate the model to real-
market cases by computing the fundamental differences in consumer surplus
that give rise to the asymmetry in the first place, over and above any cost
differences. This exercise is becoming ever more useful for academics and
regulators as many countries in Europe, such as France and Portugal, decided
recently to make available more spectrum for the entry of additional (fourth
or fifth) mobile networks. In these cases it is essential to be able to model
asymmetries in the presence of many networks.

As a final exercise, we explore the implications of our results for the setting
of mobile termination rates. We first consider the “waterbed effect” in fixed-
to-mobile interconnection, i.e. the phenomenon where profits from fixed-
to-mobile termination are handed on to consumers, leading to lower retail
prices. With linear tariffs, we predict this effect to exist, since both on- and
off-net prices decrease with higher fixed-to-mobile termination profits, yet
without being able to determine its strength. On the other hand, with two-
part tariffs we show that even in the presence of many asymmetric networks
the waterbed effect is full at the level of each individual network, as all
of the termination profit is handed over to consumers through lower fixed
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fees. These findings imply that it continues to be true in the general case
that higher fixed-to-mobile MTRs amount to a transfer of surplus from the
customers of fixed networks to those of mobile networks (and in the case of
linear tariffs, to mobile networks themselves).

Concerning mobile-to-mobile termination rates, we generalize the result
of Gans and King (2001), with competition in two-part tariffs, to the case of
many symmetric networks. Their finding was that networks maximize join
profits by setting off-net prices below the efficient level and therefore MTRs
below the true cost of termination. We show that as the number of networks
increases, joint profit-maximizing off-net prices converge towards the efficient
price. The corresponding MTRs only converge to termination cost in the
absence of call externalities, otherwise they remain bounded further below
cost.

Related literature: There is now a vast amount of work that has sprung
from the seminal contributions of Armstrong (1998) and Laffont, Rey and
Tirole (1998a,b). In the following we will mostly concentrate on the papers
that consider price discrimination between on- and off-net prices, in the tra-
dition of the third paper just mentioned. See the Laffont and Tirole (2000),
Armstrong (2002) and Vogelsang (2003 ) for surveys about the literature on
network competition. < check for multiple >

Duopoly network competition in linear tariffs has been considered by
Doganoglu and Tauman (2002), Berger (2004), de Bijl and Peitz (2004),
DeGraba (2004 ), Hoernig (2007), and Geoffron and Wang (2008). Duopoly
equilibrium results under two-part tariffs have been derived by Gans and
King (2001), Peitz (2005), Berger (2005), and Hoernig (2007).

Call externalities have been considered in Jeon, Laffont and Tirole (2004
), Berger (2004, 2005), Hoernig (2007), and Armstrong and Wright (2007).
< check HermalinKatz01 WP, KimLim01 IEP, CambiniValletti08 JIE> Our
modeling of asymmetries based on differences in surplus that consumers de-
rive directly from pertaining to one or the other network has been introduced
by Carter and Wright (1999, 2003), and has been taken up in de Bijl and
Peitz (2004), Peitz (2005) and Hoernig (2007).

Several papers on mobile-to-mobile interconnection have considered more
than two competing networks, in different models where all firms directly
compete with each other. Symmetric networks are assumed by: Calzada and
Valletti (2008), and Armstrong and Wright (2007).1 Dewenter and Haucap
(2005) consider more than two asymmetric networks, but they take market
shares as given and thus do not close the model. Closest to our paper is

1In an extension section, Calzada and Valletti (2008) consider asymmetric calling pat-
terns with three networks.
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Thompson, Renard and Wright (2007), in using a similar demand specifi-
cation and considering an arbitrary number of networks which can differ in
subscription surplus. Yet, networks in their model do not price-discriminate
between on- and off-net calls, and no closed-form solution for the equilibrium
is derived.2

Gans and King (2000) analyse how mobile networks set fixed-to-mobile
termination rates under customer ignorance about which mobile network
they are calling. Under the assumption that mobile networks’ market shares
are fixed they consider an arbitrary number of asymmetric networks. On
the other hand, they assume symmetric duopoly when modeling competition
in two-part tariffs between networks. Wright (2002) considers the setting of
fixed-to-mobile termination rates by an arbitrary number of competing sym-
metric mobile networks. While he abstracts from mobile-to-mobile calls and
uses a more general formulation of subscription demand, his pricing structure
is equivalent to two-part tariffs with call prices set at cost. Thus his results
can be compared to the ones derived in our framework. He shows that all
profits from fixed-to-mobile termination are passed on to mobile customers,
i.e. there is a full “waterbed effect”, if a common shift in the cost of signing
up subscribers does not change equilibrium profits. This is the case for ex-
ample in Hotelling models under full market coverage. The waterbed effect
is less than full for example if the market is less than fully covered.3 Arm-
strong (2002, section 3), elaborating on Armstrong (1997), models setting of
fixed-to-mobile termination rates by an indeterminate number of symmetric
mobile networks under perfect competition.

This paper has the following structure: Section 2 presents the model, dis-
cusses stability in consumer expectations and derives socially optimal prices
and market shares. Section 3 presents the Nash equilibrium solutions in
linear and nonlinear tariffs, while Section 4 considers the symmetric case.
Finally, Sections 5 and 6 present results on fixed-to-mobile and mobile-to-
mobile termination, while Section 7 concludes.

2Other models of competition between multiple symmetric networks under non-
discriminatory pricing are Jeon and Hurkens (2008), Stennek and Tangerås (2008) and
Tangerås (2009). On the other hand, Hurkens and Jeon (2008) only consider two net-
works under termination-based price discrimination.

3Genakos and Valletti (2008) perform a similar analysis assuming a logit demand struc-
ture.
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2 Model Setup

2.1 Demand, Market Shares and Consumer Surplus

The following model is a generalization of the network competition models
of Laffont, Rey, Tirole (1998) and Carter and Wright (1999, 2002) to many
asymmetric networks. It leads to a demand formulation that is similar to
those of Armstrong and Wright (2007, AW below) and the “spokes model”
by Chen and Riordan (2007, CR below),4 but allows explicitly for exogenous
asymmetry between networks. All networks directly compete against each
other, which for more than three networks is different from the mostly used
generalization of the Hotelling model to multiple firms, the circular city model
of Salop. The equilibrium concept we employ is static Nash equilibrium of
the pricing game between networks in either linear or two-part tariffs with
price discrimination between on- and off-net prices.5

There are n ≥ 2 networks, and consumers are located on n (n− 1) /2
segments of individual length l (n) which link all networks to each other
(thus networks compete on a complete graph). The total mass of consumers
is 1, thus each segment has 2

n(n−1)
consumers. Let d (n) = 2

n(n−1)
/l (n) be the

density of consumers in preference space.
Transport cost are linear, with unit cost t > 0. As t → ∞ each network

becomes a local monopoly, while for t → 0 transport cost disappear and we
approach perfect competition. Let σ = d (n) /2t.

Market shares are αi > 0 with
∑n

i=1 αi = 1. All networks are intercon-
nected, thus consumers can make calls to any one of them.

A client of network i receives surplus wi+Ai/σ, where Ai is a measure of
the consumer’s fixed surplus from being connected to network i (which may
include brand value, trust etc.), and wi is the surplus arising from making
calls, defined below. We assume A1 ≥ A2 ≥ ... ≥ An = 0, i.e. the lowest
surplus level is normalized to zero since only the differences Ai − Aj will
matter. Network i charges a two-part tariff consisting of a fixed charge Fi,
and prices per minute of pii for on-net calls and pij for off-net calls to network
j.

Consumers’ utility of calls is u (q), with indirect utility v (p) = maxq u (q)−
pq (with v′ (p) = q (p)). Below we will denote the price elasticity of demand as
η = −pq′/q, but note that we never assume it to be constant. Let vij, qij, uij
be defined as v (pij), q (pij), u (qij). The utility of receiving calls is γu (q)

4The spokes model is built from specific graphical foundations, while Armstrong and
Wright’s demand formulation is presented ad hoc.

5Some authors refer to these tariffs as “multipart tariffs”, but we employ here the
original terminology used in Laffont, Rey and Tirole (1998b).
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where γ ∈ [0, 1). Assuming an ex-ante balanced calling pattern, wi is given
by

wi =
n∑

j=1

αj (vij + γuji)− Fi =
n∑

j=1

αjhij − Fi (1)

Defining the (n× n)−matrix h = (hij)ij and the (n× 1)−vectors F = (Fi)i
and α = (αi)i, we can restate the above in matrix form as

w = hα− F. (2)

The matrix h is a function of prices, and will therefore be indirectly a function
of costs, MTRs and market shares.

We assume throughout that on each segment both adjoining networks
have clients, thus the indifferent consumer on segment ij is located at the
distance xj from network i, defined by

wi + 2tAi − txij = wj + 2tAj − t (l − xij) . (3)

Solving for xij yields network i’s market share on segment ij as

xij =
l

2
+
1

2t
(wi − wj) + (Ai − Aj)

xij =
1

n (n− 1)
+Ai − Aj + σ (wi − wj) .

Summing over segments yields network i’s total market share:

αi = d (n)
∑

j �=i

xij =
1

n
+

(

(n− 1)Ai −
∑

j �=i

Aj

)

+ σ

(

(n− 1)wi −
∑

j �=i

wj

)

(4)

αi =
∑

j �=i

xij =
1

n
+ (n− 1)Ai −

∑

j �=i

Aj + σ

(

(n− 1)wi −
∑

j �=i

wj

)

(5)

Thus σ = 1
ln(n−1)t

. In the symmetric case, this expression for market shares

is equivalent to AW (p. 31) with σ = 1/2t (n− 1) or l = 2
n
and CR (p. 902)

under maximum variety and after setting σ = 1/n (n− 1) or l = 1.6

In matrix notation we have

α = α0 +B (A+ σw) , (6)

6In Section 4 we will come back to the economic significance of these transformations
of the differentiation parameter.
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where α0 is the (n× 1) vector of symmetric market shares 1/n and B is an
(n× n) matrix with the values (n− 1) on the diagonal and −1 elsewhere.
Market shares in a fully covered market must add up to 1, which is the case
here: Let E be the (n× 1) vector of ones, then

n∑

i=1

αi = E′α = E′α0 + E′B (A+ σw) = n×
1

n
= 1, (7)

because E′B = 0.
Plugging (2) into (6) leads to

(I − σBh)α = α0 +B (A− σF ) , (8)

and solving for α leads to

α = (I − σBh)−1 [α0 +B (A− σF )]

= Gα0 +H (A− σF ) , (9)

where I is the (n× n) identity matrix, G = (I − σBh)−1 andH = (I − σBh)−1B.
Thus we have found a simple unique solution for market shares given prices.7

The following Lemma states some properties of G and H which will be useful
later on.

Lemma 1 We have: E′G = E′, E′H = 0 and HE = 0. In particular,∑n

i=1Hij = 0 for all j, and
∑n

j=1Hij = 0 for all i.

Proof. First note that E ′ (I − σBh) = E′ − σ0h = E′ since E′B = 0.
Therefore

E ′G = E′ (I − σBh) (I − σBh)−1 = E′.

Note that GE �= E in general. Furthermore, E′H = (E′G)B = E′B = 0
and HE = G (BE) = 0 since BE = 0.

Consumer surplus: Total consumer surplus consists of the difference be-
tween the surplus from pertaining to networks and making calls, and “trans-
port cost” which measures the welfare cost of a less than perfect fit with

7This solution does not yield equilibrium market shares explicitly since both H0 and
H may depend on market shares indirectly through prices. We study price choice in the
next section.
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preferences:

S =
n∑

i=1

[

αi (wi + 2tAi)−
∑

j �=i

∫ xij

0

tzdz

]

=
n∑

i=1

[

αi

(
wi +

Ai

σ

)
−
1

4σ

∑

j �=i

x2ij

]

(10)

= α′
(
hα− F +

1

σ
A

)
−
1

4σ

∑

i,j �=i

x2ij.

2.2 Stability

One important technical aspect, discussed at length in Laffont, Rey, Tirole
(1998b) for the duopoly case, is the stability of equilibrium in consumer
expectations. In this section we show how this stability condition can be
generalized to the presence of an arbitrary number of firms.

Lemma 2 The Nash equilibrium in the price competition game, no matter
whether in linear or in two-part tariffs, is stable in consumer expectations if
and only if αi ≥ 0 for all i = 1, ..., n and σ ∈ (0, 1/κ), where κ is the largest
eigenvalue of Bh.

Proof. The condition that all αi are non-negative is a pre-condition for a
well-defined equilibrium candidate. Now consider, similar to Laffont, Rey,
Tirole (1998b), a virtual tâtonnement process where consumers observe mar-
ket shares αt−1 and then join networks based on the resulting welfare. This
leads to market shares

αt = α0 +B (A+ σ (hαt−1 − F )) = [α0 +B (A− σF )] + σBhαt−1.

The effect of market shares at t − 1 on market shares at time t is given by
dαt/dαt−1 = σBh. For this tâtonnement process to converge, it is necessary
that the largest eigenvalue of σBh be less than 1, which is equivalent to the
condition stated in the Lemma.

Since B has rank (n− 1), one eigenvalue of Bh is zero. With symmetric
prices, we have hii ≡ hon, hij ≡ hoff , and the other (n− 1) eigenvalues
of Bh are all equal to n (hon − hoff ). Thus under symmetry equilibrium is
stable if

σ < σ̄ =
1

n (hon − hoff)
.

This leads to some straight-forward implications for market stability:
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Proposition 1 With symmetric networks competing in linear or two-part
tariffs, the symmetric market equilibrium is less likely to be stable

1. for a higher number of firms, for given per-minute prices;

2. for a higher mobile termination rate a;

3. for a higher competitive intensity σ.

Proof. 1. σ̄ decreases in n for given (hon − hoff ). 2. hoff decreases in a, and
σ̄ increases in hoff . 3. Higher σ more likely violates the stability condition.

It is of interest to note that the corresponding stability conditions, by
virtue of the transformations of the differentiation parameter σ indicated
above, for AW and CR would be 1

2t
< n−1

n(hon−hoff)
and 1 < n−1

hon−hoff
. In

both cases we obtain the counter-intuitive result that market stability in-
creases (rather than decreases) with the number of networks. Maybe more
worryingly, instability is more likely to occur in market with few networks.

2.3 Profits

Networks incur fixed cost per customer of fi, and have on-net cost cii =
coi + cti, where the indices o and t stand for origination and termination,
respectively. The mobile termination charge on network i is ai, so that costs
of off-net calls from network i to network j �= i are cij = coi+aj. The mobile
termination margin is mi = ai − cti. Networks’ profits are

πi = αi

(∑n

j=1
αjRij + Fi +Qi − fi

)
, (11)

where Rij = (pij − coi − aj) qij + (ai − cti) qji are the profits from calls be-
tween networks i and j. Note that this simplifies to Rii = (pii − cii) qii,
and Rij = (pij − cij) qij + miqji for j �= i. Furthermore, Qi = miqfi are
fixed-to-mobile termination profits.

Let J ij be the matrix with entry 1 at position (i, j) and zero elsewhere,
R be the (n× n) matrix with entries Rij, and F , Q, f be the (n× 1)-vectors
with entries Fi, Qi, and fi, respectively. We can express network i’s profits
in matrix notation as

πi = α′J ii (Rα+ F +Q− f) , (12)
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and, since
∑n

i=1 J
ii = I, joint profits of all networks as

n∑

i=1

πi = α′ (Rα+ F +Q− f) . (13)

Total welfare in the market for mobile telephony is given by

W = S +
n∑

i=1

πi (14)

= α′
[
(R+ h)α+

1

σ
A+Q− f

]
−
1

4σ

∑

i,j �=i

x2ij (15)

We can now describe first-best prices and market shares:

Proposition 2 1. First-best per-minute prices are pij =
coi+ctj
1+γ

for all
i, j = 1, ..., n.

2. Let M ≡ R+h at first-best prices. Then socially optimal market shares
in the mobile telephony market are

α∗ = (I − σB (M ′ +M))
−1
[α0 +B (A+ σ (Q− f))] , (16)

if asymmetries are small enough. With symmetric network cost, opti-
mal market shares become

α∗ = α0 +B (A+ σ (Q− f)) . (17)

Proof. In the expression for aggregate profits the terms corresponding to
mobile-to-mobile termination costs and profits cancel, so that after some
re-ordering of terms with indices ij and ji,

α′ (R+ h)α =
∑

i,j

αiαj [(pij − coi − ctj) qij + vij + γuij] .

Thus for each pair ij the same surplus maximization problem is posed, with
first-order condition

qij + (pij − coi − ctj) q
′
ij − qij + γu′ijq

′
ij = 0.

Since u′ij = pij at the consumer’s optimal choice of call minutes the above
result obtains.
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LetM ≡ R+h at the socially optimal prices. Then we need to maximize
social surplus

W = α′Mα+ α′
(
1

σ
A+Q− f

)
−
1

4σ

∑

i,j �=i

x2ij

subject to the conditions xji =
2

n(n−1)
− xij and xij ≥ 0 for all j �= i,

i = 1, ..., n. Omitting for the moment the non-negativity constraints, and
substituting out xji in αj =

∑
k �=j xjk, we have

dα
dxij

= (ei − ej), where ei and

ej are (n× 1) vectors with value 1 at position i and j, respectively, and zeros
elsewhere. Thus, maintaining the substitution of xji, we have the first-order
conditions, for all i and j �= i,

dW

dxij
= (ei − ej)

′Mα+ α′M (ei − ej) + (ei − ej)
′

(
1

σ
A+Q− f

)

−
1

2σ
xij +

1

2σ

(
2

n (n− 1)
− xij

)
= 0.

Taking into account that α′M (ei − ej) = (ei − ej)
′M ′α, and summing the

conditions over j �= i, we obtain

Bi (M
′ +M)α+Bi

(
1

σ
A+Q− f

)
−
1

σ
αi +

1

σn
= 0,

where Bi is row i of the matrix B. Stacking these equations leads to

B (M ′ +M)α+B

(
1

σ
A+Q− f

)
−
1

σ
α+

1

σ
α0 = 0

and the condition

(I − σB (M ′ +M))α = α0 +B (A+ σ (Q− f)) .

Note that B (M ′ +M) = 0 with symmetric network cost. These results hold
as long as all xij ≥ 0, which holds if and only if the asymmetries in network
cost and A+ σ (Q− f) are small enough.

< comment, interpret >

With symmetric network cost, since Bh∗ = 0, by (9) the socially optimal
market shares α∗ can be induced by introducing fixed fees equal to F =
f −Q+ k, where k has the same value in each component. That is, not the
absolute value of fixed fees is relevant, only the differences between firms.
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What needs to be signalled to consumers is the difference in net fixed cost
(f −Q) per consumer. If on the other hand network costs are not symmetric,
then there is no longer a simple correspondence between conditions (9) and
(16), and fixed fees must be chosen such that

σBF = α0 +BA− (I − σBh) (I − σB (M ′ +M))
−1
[α0 +B (A+ σ (Q− f))] .

Note, though, that our result on the first-best market share, and the resulting
fixed fees, considers the transfer Q from the fixed telephony market as given.
In particular, it does not take into account the welfare loss caused by this
transfer. These optimal market shares also take the surplus asymmetry A,
which distinguishes networks in the eyes of consumers, as given. Indeed, if
consumers as a whole prefer some networks then at the social optimum these
networks’ market shares should be higher.

3 Pricing Equilibrium

In this section we will describe equilibrium prices and market shares under
both linear and nonlinear pricing. As some results concerning the effects
of mobile termination rates are known to differ between these two types of
strategies (see e.g. Laffont, Rey and Tirole (1998a,b), it seems useful to
consider the case of many firms for both of them.

3.1 Linear Tariffs

With linear tariffs, let F = 0. Each network chooses the prices pii and pij in
order to maximize its profits

πi = αi

(∑n

j=1
αjRij +Qi − fi

)
= α′J ii (Rα+Q− f) .

We first state a central result about how per-minute prices affect market
shares.

Lemma 3 For any price p, we have dα
dp
= σH dh

dp
α, with

∑n

i=1
dαi
dp
= 0.

Proof. From condition (8) we have (I − σBh)α = α0+BA. Taking deriva-
tives on both sides leads to

−σB
dh

dp
α+ (I − σBh)

dα

dp
= 0,
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fromwhich the result follows. Furthermore,
∑n

i=1
dαi
dp
= E′ dα

dp
= σ (E ′H) dh

dp
α =

0 since E′H = 0.

As is common in models network competition in linear prices, we cannot
give explicit expressions for the equilibrium prices. Still, we can show how the
equilibrium off-net prices relate to on-net prices. For the sake of generality,
we consider the case where network i divides its competitors into separate
groups K and charges a uniform off-price piK to each group. Extreme cases
are where each group contains a single member (in which case there is price
discrimination between all networks), or where all other networks are in the
same group (the case of a uniform off-net price). We obtain the following
results on equilibrium prices:

Proposition 3 1. Network i’s equilibrium on-net price satisfies the fol-
lowing condition:

Lii =
pii − cii
pii

=
1

η
−
σ (1 + γη)Hii

η

(
πi
α2i
+

n∑

j=1

Rij

Hji

Hii

)

. (18)

2. If network i sets uniform prices piK to different groups K of competing
networks, its average off-net Lerner index

L̄ij =

∑
K

∑
j∈K αj (piK − cij) /piK

1− αi

(19)

satisfies the condition

L̄ij =
1

η
+
(1 + γη)−1 − αi

1− αi

(
Lii −

1

η

)
. (20)

3. Network i’s profits are given by

πi = α2i

(
1

σHii

1− ηLii

1 + γη
−

n∑

j=1

Rij

Hji

Hii

)

. (21)

Proof. For on-net prices we obtain

dh

dpii
= (γpiiq

′
ii − qii)J

ii = − (1 + γη) qiiJ
ii.

Thus

dα

dpii
= −σ (1 + γη) qiiHJ iiα = −σ (1 + γη) qiiαiH·i,
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where H·i is the ith column of H. Furthermore, dR
dpii

= (1− ηLii) qiiJ
ii,

where Lii = (pii − cii) /pii is the Lerner index for on-net calls. The first-
order condition for profit-maximization with respect to the on-net price is

dα′

dpii
J ii (Rα+Q− f) + α′J ii dR

dpii
α+ α′J iiR

dα

dpii
= 0,

which simplifies to

−Hii (Ri·α+Qi − fi)− αiRi·H·i +
αi (1− ηLii)

σ (1 + γη)
= 0 (22)

or

πi = α2i

(
1

σHii

1− ηLii

1 + γη
−

n∑

j=1

Rij

Hji

Hii

)

. (23)

Solving for Lii leads to the condition on the on-net price.

2. Assume that network i sets a uniform off-net price piK to a set K of
other networks. We have

dh

dpiK
= −qiKJ

iK + γpiKq
′
iKJ

Ki = −qiK
(
J iK + γηJKi

)
,

where J iK and JKi are matrices with ones at locations ij and ji where j ∈ K,
respectively, and zeros elsewhere. Thus

dα

dpiK
= −σqiKH

(
J iK + γηJKi

)
α = −σqiK

(
∑

j∈K

αjH·i + γηαi

∑

j∈K

H·j

)

The first-order condition for a profit maximum becomes

dα′

dpiK
J ii (Rα+Q− f) + α′J ii dR

dpiK
α+ α′J iiR

dα

dpiK
= 0,

where dR
dpiK

has elements qiK (1− ηLij), where Lij = (piK − cij) /piK at loca-
tions ij, j ∈ K, and mjq

′
iK at locations ji, j ∈ K. Note that off-net costs cij

may differ between receiving networks j. This first-order condition can be
rewritten as

0 =

(
∑

j∈K

αjHii + γηαi

∑

j∈K

Hij

)

(Ri·α+Qi − fi)

+αiRi·

(
∑

j∈K

αjH·i + γηαi

∑

j∈K

H·j

)

−
αi

σ

∑

j∈K

αj (1− ηLij) .
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Summing over all sets K, and making use of
∑

j �=iH·j = −H·i from Lemma
1, leads to

−Hii (Ri·α+Qi − fi)− αiRi·H·i +
αi (1− αi)

(
1− ηL̄ij

)

σ (1− αi − γηαi)
= 0, (24)

where L̄ij =
∑

j �=i αjLij/ (1− αi) is the weighed average Lerner index of
off-net prices, or

πi = α2i

(
(1− αi)

(
1− ηL̄ij

)

σ (1− αi − γηαi)Hii

−
n∑

j=1

Rij

Hji

Hii

)

. (25)

Taking the difference between (25) and (23) we obtain

α2i (1− αi)
(
1− ηL̄ij

)

σ (1− αi − γηαi)Hii

=
α2i (1− ηLii)

σ (1 + γη)Hii

,

from which the above result follows.

Condition (18) is the generalization to n asymmetric networks of condition
(12) in Laffont, Rey and Tirole (1998b). The result on off-net prices is the
generalization to n networks with asymmetric costs, and up to n different
off-net prices to groups of networks, of equations (6) in Laffont, Rey and
Tirole (1998b) and (11) in Hoernig (2007) for two networks. It is remarkable
that the relationship between the average level of off-net prices, as measured
by L̄ij, and on-net prices remains the same even as the number of networks
increases.

If network i charges a uniform off-net price piu to all other networks, then
we can reformulate L̄ij as follows:

L̄ij =

∑
j �=i αj (piu − cij) /piu

1− αi

=
piu − c̄iof

piu
, (26)

where c̄iof =
(∑

j �=i αjcij
)
/ (1− αi) is the weighted average off-net cost faced

by network i. Thus for a uniform off-net price, L̄ij simply becomes the Lerner
index relative to weighted average off-net cost.

< interpretation for on/off-net differential >
As we will see below, the expression (21) uncovers a previously overlooked

link between the equilibrium profits under competition in linear and two-part
tariffs. This link may aid future research into the relationship between the
two modes of competition.
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3.2 Two-Part Tariffs

In this section, we determine the equilibrium prices, fixed fees and market
shares for the case of competition in two-part tariffs. We find the following:

Proposition 4 If networks compete in two-part tariffs,

1. On-net prices are set efficiently at pii = cii/ (1 + γ).

2. The uniform off-net price to a group K of competing networks is

piK =

∑
j∈K αjcij

∑
j∈K αj −

|K|
n−1

γαi

. (27)

3. Equilibrium fixed fees are given by

F = f −Q−
(
R̂ +R

)
α, (28)

where R̂ is an (n× n) matrix with elements R̂ii =
∑n

j=1
Hji

Hii
Rij −

1
σHii

and R̂ij = 0 for j �= i.

Proof. 1. In order to determine equilibrium call prices, we follow the stan-
dard procedure of first keeping market shares α constant and solving (4) for
Fi,

Fi =
n∑

j=1

αjvij + αiγuii −
αi

n− 1

∑

j �=i

uij + const,

where “const” denotes terms that do not depend on network i’s prices. Sub-
stituting this into profits leads to

πi = αi

(
n∑

j=1

αj (Rij + vij) + αiγuii −
αi

n− 1

∑

j �=i

uij

)

+ const.

This expression can now be maximized over call prices. As concerns the
on-net price, network i solves

max
pii
{Rii + hii} = {(pii − cii) qii + vii + γuii} ,

which has first-order condition

qii + (pii − cii) q
′
ii − qii + γu′iiq

′
ii = 0.
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Since u′ij = pij at the consumer’s optimal choice for all i, j = 1, ..., n, we
obtain

pii =
cii
1 + γ

, (29)

i.e. on-net prices are set at the efficient level.

2. Assume now that network i wants to set a uniform off-net price piK
towards a group K of other networks, solving

max
piK

{
∑

j∈K

(
αj ((piK − cij) qiK + viK)−

αi

n− 1
γuiK

)}

.

Here qiK = q (piK), viK = v (piK) and uiK = u (qiK). Performing similar
calculations as above leads to

piK =

∑
j∈K αjcij

∑
j∈K αj −

|K|
n−1

γαi

. (30)

3. Now we determine the equilibrium fixed fees. Take the call prices and
fixed fees of networks j �= i as given, and consider the first-order condition
of network i’s profit maximum in (11) with respect to its fixed fee:

∂πi
∂Fi

=
∂αi

∂Fi

(
n∑

j=1

αjRij + Fi +Qi − fi

)

+ αi

(
n∑

j=1

∂αj

∂Fi

Rij + 1

)

= 0.

From (9), for all i, j = 1, ..., n we have
∂αj
∂Fi

= −σHji, where Hji is the ji-
element of matrix H. The first-order condition can then be solved for Fi

as

Fi = fi −Qi − αi

(
n∑

j=1

Hji

Hii

Rij −
1

σHii

)

−

n∑

j=1

αjRij . (31)

Letting R̂ be an (n× n) matrix with R̂ii =
∑n

j=1
Hji

Hii
Rij −

1
σHii

and R̂ij = 0
if j �= i, we can write

F = f −Q−
(
R̂+R

)
α. (32)

Thus we confirm the standard result of the efficiency of on-net prices under
two-part tariffs for the case of many asymmetric networks. If there are no
call externalities (γ = 0) then pii = cii, while in the presence of the latter the
efficient on-net price is below cost.
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As concerns the off-net prices, in the absence of call externalities they are
equal to weighted average off-net cost:

piK =

∑
j∈K αjcij∑
j∈K αj

.

This is a natural generalization of the result for two firms. Furthermore, as in
Jeon et al. (), Berger (2005) and Hoernig (2007), the off-net prices increase
in γ and are above (weighted average) off-net cost if γ > 0. Expression (27)
shows that network i sets its off-net price to a set K of networks as if it was
setting a uniform off-net price to all networks, assuming they all have the
same average market share as those in the set K.

Two special cases of off-net prices are a uniform off-net price

piu =

∑
j �=i αjcij

1− αi − γαi

,

and price discrimination between all networks, with

pij =
αjcij

αj −
1

n−1
γαi

.

We now consider equilibrium profits and market shares.

Proposition 5 Equilibrium profits and market shares are, respectively,

π∗i = α2i

(
1

σHii

−
n∑

j=1

Rij

Hji

Hii

)

, (33)

α∗ =
(
I − σB

[
h+ R̂ +R

])−1
(α0 +B [A+ σ (Q− f)]) . (34)

Proof. The expression for profits results from substituting equilibrium fixed
fees into (11). Finally, substituting fixed fees into (8) yields the condition for
the equilibrium market share.

One should take note that the expression for equilibrium profits (33) is
every similar to the one in (21). Indeed, this similarity is no coincidence:

Corollary 1 At efficient on-net prices, the expressions for equilibrium prof-
its (21) under linear tariffs and (33) under two-part tariffs are formally iden-
tical.
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Proof. With pii =
cii
1+γ

, we have 1−ηLii
1+γη

= 1. Thus the additional term in

(21) disappears.

The same argument holds for expression (25), by the way, since at the
off-net prices (27) the average Lerner index has value L̄ij = γ αi

1−αi
, which

again makes the additional term disappear. These observations imply that
the fundamental difference between competition in linear and two-part tariffs
lies in how usage prices are set, rather than in the existence or not of a fixed
fee. Maybe surprisingly, the expression for equilibrium profits under linear
tariffs turns out to be more general than the one under two-part-tariffs, rather
than less, as it applies to both cases (with different retail prices, sure enough).
< explore relationship with DeGraba (2004) >

Note that an alternative expression for equilibrium profits under two-
part tariffs is π∗i = −α

′J iiR̂α, which leads to the handy expression for joint
equilibrium profits of

n∑

i=1

πi = −α
′R̂α. (35)

The right-hand side of (34) in general depends indirectly on α through h+R̂+
R and off-net prices. Contrary to the two-firm case, this is true even if there
are no call externalities, since in this case the off-net prices are equal to off-
net costs weighted by market shares. Only if off-net costs (including mobile
termination rates) are symmetric will the dependence on α disappear. In the
latter case (34) gives an explicit solution for market shares, but otherwise
numerical methods need to be employed.

Calibration: If we want to calibrate the model using observed market shares
and prices, the fixed surplus A can be calculated from (34), starting by the
normalization An = 0:

BA =
(
I − σB

(
R̂+R+ h

))
α− α0 − σB (Q− f) . (36)

The matrix B cannot be inverted, but using An = 0 and solving the first
(n−1)×(n−1) dimensions of this system yields the unique A1, ..., An−1 that
give rise to the observed market shares α.

4 The Special Case of Symmetric Networks

4.1 Preliminaries

In this section we will shortly resume the outcomes of our models under
symmetric networks, i.e. with equal network and fixed costs, the same surplus
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A (normalized to zero) and the same mobile-to-mobile and fixed-to-mobile
termination charges for all networks.

In a symmetric equilibrium market shares are αi ≡
1
n
. Let network costs

including MTRs be con and coff for on- and off-net calls, respectively. The
equilibrium surplus from on- and off-net calls is hii ≡ hon and hij ≡ hoff ,
with Hii = Hon and Hij = Hoff . Let Rii ≡ Ron = (pon − con) qon and
Rij = Roff = (poff − con) qoff for j �= i,8 and Fi ≡ F0, Qi ≡ Q0 and fi = f0.
Thus profits from (11) become

π =
1

n

(
1

n
Ron +

n− 1

n
Roff + F0 +Q0 − f0

)
. (37)

Our first result is of technical nature and applies to both linear and two-
part tariffs:

Lemma 4 With n symmetric networks,

Hon =
n− 1

1− nσ (hon − hoff )
, Hoff = −

1

1− nσ (hon − hoff)
. (38)

If the symmetric equilibrium is stable in customer expectations, i.e. nσ (hon − hoff ) <
1, then Hon > 0 and Hoff < 0.

An important characteristic of our n-firm Hotelling model, which as Chen
and Riordan (2007, p. 898) have pointed out is shared by the Salop circular
city model (1979), is that each network’s demand elasticity converges to
infinity as the number of networks grows. For example, assuming γ = 0 and
a = ct in order to guarantee stability for all n,

9 we have in our model

dαi

dFi

= −σHon = − (n− 1)σ.

Demand elasticity becomes

εH = −
dαi

dFi

Fi

αi

= n (n− 1)σFi →∞.

The main implication of elasticity becoming infinite is that as the number of
networks becomes large not only do networks’ profits converge to zero, but
so do profits per subscriber (see below) and also industry profits.

8The occurrence of con in Roff is not a typo – it is due the cancelling-out of mobile-
to-mobile interconnection profits.

9Evidently, the following discussion does not depend on this assumption for small n.
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This is rather different with the logit model employed by Calzada and
Valletti (2008) and the spokes model in CR. As for the former, assuming
γ = 0 and a = ct, and denoting the differentiation parameter τ with τ →∞
indicating convergence to homogeneity, market shares are given by

αi =
exp (−τFi)∑n
j=1 exp (−τFj)

, (39)

with

dαi

dFi

= −ταi (1− αi) = −
(n− 1) τ

n2

εL = −
dαi

dFi

Fi

αi

=
(n− 1) τ

n
→ τFi.

Thus in the logit model, as the number of networks becomes large, demand
elasticity remains finite, and therefore networks’ profits per subscriber (and
industry profits) do not converge to zero, though individual networks’ profits
still do. The same holds true for the spokes model (p. 914). Thus both are
models of “monopolistic competition”.

The above expressions actually provide a decisive hint as to how to com-
pare the symmetric equilibrium outcomes of the Hotelling and logit models:
The outcomes are equivalent for σ = τ/n2. As we have noted above, a similar
expression holds directly for market shares in the spokes model, σ = 1

n(n−1)
,

which is of the same magnitude in n as for the logit model, and AW with
σ = 1

2t(n−1)
. Going back to the definition of the space of product differ-

entiation in the Hotelling model as a complete graph with lines linking all
networks, the logit and spokes models behave like a Hotelling model where
the length of lines is not decreasing in n, but rather constant (with consumer
density decreasing accordingly). Thus the remaining local market power in
both models can be understood as arising from a “stretching” of the prod-
uct space in the presence of more varieties. AW occupies an intermediate
ground where line length decreases slower than in our model (while total
preference space increases), but does so fast enough to make local market
power evaporate as ε = nFi/2t→∞.

4.2 Symmetric equilibrium with linear tariffs

We will now consider linear and two-part tariffs in turn. With linear tariffs,
the condition describing symmetric off-net prices becomes (let Lii ≡ Lon and
Lij = L̄ij = Loff )

Loff =
1

η
+
n (1 + γη)−1 − 1

n− 1

(
Lon −

1

η

)
. (40)
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As for the case with two networks (see Hoernig 2007), the relation between
off-net and on-net Lerner indices is given by a line that passes through the

monopoly point
(
1
η
, 1
η

)
. With γ = 0 both Lerner indices are equal, while

Loff > Lon for γ > 0 as long as pon is smaller than the monopoly price. As
a result, we have poff > pon whenever either γ > 0 or coff > con. Actually,
the off-net price is above the monopoly price based on the perceived off-net
cost if and only if γη > n− 1 (generalizing Berger (2004) where n = 2).

Define the monopoly prices pmon =
ηcon
η−1

and pmoff =
ηcoff
η−1

, and let Rm
off =(

pmoff − con
)
q
(
pmoff

)
.

Proposition 6 Assume demand elasticity η is constant and consider linear
tariffs.

1. If σ ≈ 0 and Rm
off > f , or if γ ≈ 0 and a ≈ ct, both on- and off-net

prices decrease in the number of networks n.

2. If γ ≈ 0, and either σ ≈ 0 or a ≈ ct, then the on/off-net differential
decreases in n if mobile-to-mobile termination rates are above cost. If
γ > 0 or a > ct, the off-net price remains bounded away from the on-net
price even with a large number of networks.

3. As the number of networks becomes large, the off-net price converges to
the (Ramsey) break-even price.

Proof. In the following assume that the stability condition holds for the n
considered. In particular, for very large n this implies that either σ, or γ and
a− ct, are very small.

1. With symmetric networks and constant-elasticity demand, the equi-
librium is given by the two conditions

Son = 2Ron + (n− 2)Roff −
1− nσ (hon − hoff)

σ (n− 1)

1− ηLon

1 + γη
− n (f0 −Q0) = 0,(41)

Soff =
poff − coff

poff
−
1

η
−
n (1 + γη)−1 − 1

n− 1

(
pon − con

pon
−
1

η

)
= 0. (42)

At σ = 0, networks set monopoly prices pmon and pmoff . Solving (42) for poff ,
letting pon = pmon − δσ and expanding (41) around σ = 0 results in

φn − δ
(η − 1)2

ηc1 (n− 1) (1 + γη)
+O (σ) = 0,
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where φn = 2Ron (p
m
on)+(n− 2)R

m
off−nf is positive byRon (p

m
on) ≥ Rm

off > f .
Solving for δ implies that for small σ we have

pon = pmon −
pmon (1 + γη)

η − 1
(n− 1)φnσ +O

(
σ2
)
. (43)

Expanding poff about σ = 0 leads to

poff = pmoff −
(n− 1− γη) c2
(n− 1) (1 + γη) c1

δσ +O
(
σ2
)

= pmoff −
pmoff
η − 1

(n− 1− γη)φnσ +O
(
σ2
)

(44)

Since both (n− 1)φn and (n− 1− γη)φn are increasing in n, both prices
decrease in n for small σ.

On the other hand, at γ = 0 and zero termination margin we have poff =
pon (42). Applying the implicit function theorem to (41) we obtain

dpon
dn

=
dpoff
dn

= −
n (n− 1)2 σπ + (1− ηLon)

n (n− 1)2 σR′on + (n− 1)
ηcon
p2on

< 0.

The result then follows by continuity around the limit points.
2. If γ = 0 then poff =

coff
con

pon, and we have

d (poff − pon)

dn
=

(
coff
con

− 1

)
dpon
dn

,

which is negative in both cases considered above if coff > con. As n → ∞
the next point shows that poff converges to the (positive) break-even price
pb, and pon then converges to

con
coff

pb. The latter remains bounded away from

pb if coff > con.
If γ > 0, we have

d

dn

(
n (1 + γη)−1 − 1

n− 1

)

=
γη

(1 + γη) (n− 1)2
> 0,

lim
n→∞

n (1 + γη)−1 − 1

n− 1
=

1

1 + γη
.

Thus as n increases the difference in Lerner indices becomes smaller and
converges to a limit value. Even if termination is priced at cost the off-net
price will remain above the on-net price by the factor δ given by

ponδ − c

ponδ
−
1

η
=

1

1 + γη

(
pon − c

pon
−
1

η

)
,
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or δ = c 1+γη
(η−1)γpon+c

> 1 since pon is below the monopoly price ηc

η−1
.

3. As n→∞, (41) becomes Roff = f0 −Q0.

While it is not surprising that the prices decrease as the number of net-
works increases, it is not obvious that the off-net price decreases faster than
the on-net price. The latter occurs because off-net calls make up a larger and
larger portion of calls on each network, increasing the cost of setting high
off-net prices for strategic reasons.

As we have seen, this strategic incentive does not disappear in the limit
in the sense that the on-net price will remain below the off-net price. On the
other hand, since in the limit all call revenue is brought in through off-net
calls, in the limit competition drives the price for these calls to the break-
even level. Since in this model consumers do not differ in their demands for
calls, this price is also the (second-best) Ramsey price which maximizes total
surplus under the restriction of linear pricing.10Note that in our model call
revenue just equals net fixed cost, i.e. per-subscriber fixed cost minus profits
from fixed-to-mobile termination. Thus “efficiency” in this context does not
take into account effects on the fixed network.

If both on- and off-net prices decrease then clearly the profits of individual
networks and total industry profits (which are equal to profits per subscriber)
decrease with n, as can be readily seen from (37) (with F0 = 0). Actually,
per-subscriber profit converges to zero in the limit, as we just have seen.

It may be helpful to consider a numerical example. Let con = 1, coff =
1.5, f0 − Q0 = 0, constant elasticity call demand with η = 2, γ = 0. Note
that with these parameter values the monopoly on- and off-net prices are
2 and 3, respectively, and the break-even price is equal to 1. Varying the
number of firms results in the following equilibrium values:

pon poff mqoff nπ 1− σn (hon − hoff)
n = 2 1. 549 2. 323 0.093 0.237 0. 785
n = 3 1. 121 1. 682 0.177 0.193 0. 554
n = 4 0. 922 1. 383 0.262 0.127 0. 277
n = 5 0. 833 1. 250 0.320 0.080 0
The market remains stable in customer expectations while n < 5. It is

remarkable that as the number of firms increases both the on- and off-net
prices may fall below their respective marginal cost, while the equilibrium
continues to be stable. This is made possible by the additional profit contri-
bution from mobile-to-mobile termination, which actually rises due to lower
off-net prices.

10See Laffont, Rey and Tirole (1998b), p. 42.
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4.3 Symmetric equilibrium with two-part tariffs

Since Nash equilibria with two-part tariffs are more amenable to analysis, the
case of symmetric equilibria with many firms has already been considered by
several authors, such as Calzada and Valletti (2008) under logit demand and
AW with Hotelling demand. The latter also considered call externalities, but
of a different function form. Thus our results here complement both previous
papers.

With two-part tariffs and symmetric networks, the on-net price remains
equal to pon =

con
1+γ

. The off-net price becomes

piu = piK = pij =
n− 1

n− 1− γ
coff . (45)

This off-net price is decreasing with n and converges to perceived marginal
cost coff as the number of networks becomes large. As with linear tariffs (at
least under certain conditions on model parameters), the on/off-net differ-
ential decreases if more networks are present since the on-net price remains
constant at the efficient level.

Fixed fees are

F0 = f0 −Q0 +
1− nσ (hon − hoff)

σn (n− 1)
−
2

n
Ron −

n− 2

n
Roff ,

which approaches F0 = f0 −Q0 −Roff (i.e. zero profits per subscriber) as n
becomes large. Equilibrium profits can be written as

π =
1

n2

(
1− nσ (hon − hoff)

σ (n− 1)
−Ron +Roff

)
, (46)

where Ron = − γ

1+γ
conqon and Roff =

(
n−1

n−1−γ
coff − con

)
qoff . Profits per

subscriber and industry profits nπ converge to zero as n becomes large, as
do evidently individual networks’ profits.

AW, assuming call externalities given by bqoff rather than γu (qoff ), ob-
tain equilibrium call prices of (in our notation):

pon = con − b, poff = coff +
b

n− 1
.

They do not state the equilibrium value of fixed fees, while individual net-
works’ profits are (their Π/K from (21), in our notation)

π =
1

n2

(
2t−

n

n− 1
(hon − hoff)−Ron +Roff

)
.
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This is formally equal to (46) with σ = 1/2t (n− 1). As in our model, profits
per subscriber converge to zero.

The corresponding expressions for equilibrium fixed fees and profits in
Calzada and Valletti (2008) are (using our notation in (39), with Ron = 0
and Roff = mqoff due to the absence of call externalities)

F0 = f0 −Q0 +
n− τ (von − voff )

τ (n− 1)
−
n− 2

n
mqoff

π =
1

n

(
n− τ (von − voff )

τ (n− 1)
+mqoff

)

These expressions are equal to ours for σ = τ/n2. As we have pointed out
above, when the number of networks becomes large one should expect profits
per subscriber to converge to a finite value in the logit model, and this is
indeed what we find: nπ → 1

τ
> 0.

5 Fixed-To-Mobile Termination and the Wa-

terbed effect

In this section we will state what our previous results imply for the fixed-
to-mobile “waterbed effect”, i.e. the phenomenon according to which ter-
mination profits accruing from interconnection to the fixed network lead to
reductions in prices for mobile retail customers. We will not consider in
detail the individual incentives of networks to set higher fixed-to-mobile ter-
mination rates, as has been done by Gans and King (2000) and by Wright
(2002). Rather, we are interested in the equilibrium effect of changes in the
(regulated) termination rate.

Linear Tariffs: With linear tariffs, by (22) and (24), ∂πi
∂pii∂Qi

and ∂πi
∂pij∂Qi

both have the sign of −Hii, which is negative at least if the market is close
enough to the symmetric equilibrium. Thus higher fixed-to-mobile profits Qi

lowers both pii and pij, and network i’s market share will increase. As long
as prices are strategic complements, all equilibrium prices will fall. There-
fore consumers of all networks will receive at least part of the rent due to
higher fixed-to-mobile termination charges. Thus a fixed-to-mobile waterbed
effect exists even with linear tariffs, but at this level of generality we cannot
determine its extent. Furthermore, while it is clear that each single network
prefers to have a high fixed-to-mobile MTR Qi, the total effect on aggregate
equilibrium profits is unclear at this level of generality. Even so, we can show
the following:
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Proposition 7 Assume that demand elasticity η is constant. If networks are
sufficiently symmetric, and call externalities and mobile-to-mobile termina-
tion rates are small, then under linear tariffs equilibrium call prices decrease
and profits increase in fixed-to-mobile termination profits.

Proof. We show that the result holds for symmetric networks, zero call
externalities and cost-based termination. The general case then follows by
continuity. Assume Qi = Q0 for all i, and consider a change in Q0. With
n symmetric networks, no call externalities and cost-based mobile-to-mobile
termination, the symmetric equilibrium linear tariff involves poff = pon. Thus
Roff = Ron and von = voff , and the on-net price is given by condition (41)
through

nRon −
1− ηLon

σ (n− 1)
+ n (Q0 − f0) = 0.

Letting R′on = dRon/dpon = qon (1− ηLon), we have

dpon
dQ0

= −
n

nR′on +
η

σ(n−1)
con
p2on

< 0,

and the effect on equilibrium profits is given by

dπ

dQ0
=

d

dQ0

1

n
(Ron +Q0 − f0) =

1

n

ηcon
σ (n− 1)np2onR

′
on + ηcon

> 0.

Thus at least if market shares are not too asymmetric, call externalities
small enough, and mobile-to-mobile MTRs are small enough, we see that
the waterbed effect is not full: Networks retain a share of fixed-to-mobile
termination profits. From the proof, we can see that this share is given by
<attention: approximation!>

ω ≈
ηcon

σ (n− 1)np2onR
′
on + ηcon

. (47)

If the market is very little competitive (σ ≈ 0 or n small) then firms retain
almost all termination profits and the waterbed effect disappears. In the
other extreme, if σ or n are very large (and if the Nash equilibrium still exists)
then the waterbed effect is almost full. Thus the extent of the waterbed effect
under linear tariffs depends decisively on the intensity of competition.

Two-part tariffs: With two-part tariffs the outcome is much easier to
establish: Remember from (28) that equilibrium fixed fees are given by

F = f −Q−
(
R̂ +R

)
α,
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where Q is the vector of per-customer profits from fixed-to-mobile termi-
nation. Thus under the assumptions of this model, including Hotelling de-
mand and full market coverage, with two-part tariffs all termination profits
are handed over to mobile consumers, i.e. there is a full waterbed effect,
even in the case of a Nash equilibrium with many asymmetric networks.
Furthermore, the waterbed effect is full at the level of each single network.
Wright (2002) showed the corresponding result for n symmetric networks in
his Proposition 3. He also made clear that the result of a full waterbed effect
is an artifact of the Hotelling model where market-wide cost increases do not
feed through into lower profits. If costs do feed through, for example because
subscription demand is elastic, then networks retain some termination rev-
enue and the waterbed effect again is not full. Genakos and Valletti (2008)
show this directly for a model with a logit demand structure.

As concerns the effect of different individual fixed-to-mobile termination
charges on market shares, consider condition (34) defining equilibriummarket
shares under two-part tariffs:

α∗ =
(
I − σB

[
h+ R̂+R

])−1
(α0 +B [A+ σ (Q− f)]) .

A higher Qi has a similar effect as a higher perceived surplus Ai or lower
per-subscriber cost fi, and thus increases network i’s market share.

6 Mobile-to-mobile termination

In this section we consider separately the effects of mobile-to-mobile ter-
mination on prices and profits. For simplicity, we assume that firms are
symmetric.11

Linear tariffs: The results that we derive below generalize those in the
duopoly models of Laffont, Rey and Tirole (1998b) and Berger (2004), the
latter with call externalities, to an arbitrary number of symmetric networks.12

Proposition 8 Assume demand elasticity η is constant and that networks
are symmetric.<verify increasing on-net prices with n > 2! >

1. If either σ is small, or if γ is small and a ≈ ct, then the on-net price
decreases and the off-net price increases in a.

11If sufficiently clear analytical results on the asymmetric case become available these
will be included in later versions.
12Berger’s graphical approach cannot be applied with more than two networks because

prices can no longer be isolated in the first-order conditions.
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2. If γ and σ are small then profits are increasing in a at a = ct, and the
per-customer profit increase is higher for a larger number of networks.
<adapt>

Proof. For small σ, we have from (43) and (44) that

dpon
da

≈ −
pmon (1 + γη)

η − 1
(n− 1) (n− 2)

dRoff

(
pmoff

)

dpoff

dpoff
da

σ +O
(
σ2
)

dpoff
da

≈
η

η − 1
+O (σ)

The off-net price increases with the MTR to first-order, while the on-net
price increases if n > 2 and a > ct because dRoff

(
pmoff

)
/dpoff < 0.

Assume γ = 0, with poff =
con+a−ct

con
pon. The first-order condition for the

on-net price becomes

2Ron + (n− 2)Roff −
1− nσ (von − voff )

σ (n− 1)
(1− ηLon) = n (f0 −Q0) ,

implying the effect on the on-net price at a = ct of

dpon
da

∣∣∣∣
a=ct

= −
σ
(
(n− 1)2 + 1

)
R′on

σ (n− 1)nR′on + η con
p2on

pon
con

< 0,

and on the off-net price of

dpoff
da

∣∣∣∣
a=ct

=

(
σ (n− 2)R′on + η con

p2on

σ (n− 1)nR′on + η con
p2on

)
pon
con

> 0.

The results for small but positive γ follow by continuity.

< discuss >
Two-part tariffs: As concerns two-part tariffs, for now we quickly con-

sider the symmetric equilibrium. We derive a generalization of the result of
Gans and King (2001) to n networks, and compare our results with those
of Calzada and Valletti (2008) who made a similar analysis for symmetric
networks under a logit demand specification.13 Joint profits are

nπ =
1

n

(
1− nσ (hon − hoff)

σ (n− 1)
−Ron +Roff

)
. (48)

13Calzada and Valletti also consider competition in utilities, which we will not pursue
here.
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The effect of the mobile-to-mobile MTR on profits is indirect, through the
effect of the off-net price poff on hoff and Roff . As we have seen in the
proof of point 1 of Proposition 4, if both hoff and Roff had the same relative
weight in profits then poff would be set efficiently. As it happens, though,
with n networks hoff has weight

n
n−1

relative to Roff , which implies that
networks want to set an off-net price that is lower than the socially optimal
value. This is what Gans and King have shown. On the other hand, our
result implies that this effect becomes less strong as n becomes large since
n

n−1
→ 1. Formally, when choosing their jointly profit-maximizing off-net

price, networks maximize

n

n− 1
(voff + γuoff) + (poff − con) qoff .

The maximum is obtained at

poff =
(n− 1) con

nγ + n− 1 + 1/η
<

con
1 + γ

= pon. (49)

This in particular implies that at the jointly profit-maximizing offnet- price
the equilibrium is stable in customer expectations for all n, since hoff > hon.
The above expression for poff and (45) imply

a = ct −
(n+ 1) γη + 1

nγη + (n− 1) η + 1
con. (50)

The above discussion is summed up in the following Proposition:

Proposition 9 If networks compete in two-part tariffs, the joint profit-maximizing
is set below the efficient level. It decreases in γ and increases in η and n.

Thus a will be lower in the presence of call externalities. This is intuitive,
as the aim of setting a low MTR is to reduce network effects which make
networks compete harder. These network effects are stronger in the presence
of call externalities.

AW’s profit-maximizing off-net price and MTR can be rewritten as

poff =
(n− 1) con − nb

n− 1 + 1/η

a = ct −
con

(n− 1) η + 1
−
(n2 − 1) η + 1

ηn− η + 1

b

n− 1
.

While the expressions differ somewhat from those in our model, the implied
economic effects are the same.
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For γ = b = 0, (50) and AW’s result on MTRs can be rewritten as

a− ct
con

= −
1

(n− 1) η + 1
, (51)

which is identical to Calzada and Valletti (2008, p. 1231). Thus this result
seems fairly robust to different specifications of demand which assume full
coverage.

As the number of networks increases, the joint profit-maximizing MTR
converges towards a = ct −

γ

γ+1
con while poff →

con
1+γ

(in AW, poff → con − b

and a → ct − b). The MTR remains below cost because the joint profit-
maximizing off-net price converges to the efficient price. Therefore only in
the absence of call externalities will networks want to set MTRs at the true
cost of termination in the limit.

7 Conclusions

In this paper we have presented a tractable extension of network competition
models with tariff-mediated externalities to an arbitrary number of asymmet-
ric firms (surplus and cost asymmetry), and derived Nash equilibria under
both linear and two-part tariffs. We derived a generalized stability condition
and determined the first-best prices and market shares, and showed how to
calibrate the model to markets with more than two networks under two-part
tariffs. Finally, we uncovered an interesting new link between equilibrium
profits under linear and two-part tariffs, and reconsidered the implications
of multiple networks for the effect and choice of fixed-to-mobile and mobile-
to-mobile termination rates.

Future versions of this paper will explore the effects of asymmetries for
mobile termination, and present some actual calibrations for mobile tele-
phony markets with at least four networks.
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